- Poster presentation
- Open access
- Published:
High performance CHO cell line development platform for enhanced production of recombinant proteins including difficult-to-express proteins
BMC Proceedings volume 7, Article number: P75 (2013)
Background
In an effort to improve product yield of mammalian cell lines, we have previously demonstrated that our proprietary DNA elements, Selexis Genetic Elements (SGEs), increase the transcription of a given transgene, thus boosting the overall expression of a therapeutic protein drug in mammalian cells [1]. However, there are additional cellular bottlenecks, notably in the molecular machineries of the secretory pathways. Most importantly, mammalian cells have some limitations in their intrinsic capacity to manage high level of protein synthesis as well as folding recombinant proteins. These bottlenecks often lead to increased cellular stress and, therefore, low production rates.
Material and Methods
Our specific approach involves CHO cell line engineering. We constructed CHO-M libraries based upon the CHO-M genome and transcriptome and using unique proprietary transposon vectors harboring SGE DNA elements to compensate for rate-limiting factors [2]. Each CHO-Mplus library displays a diversity of auxiliary proteins involved in secretory pathway machineries and cellular metabolism. Collectively, the libraries address a broad range of expression issues.
Conclusions
Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the metabolic pathway ('omic' profiling) improves the secretion efficiency of therapeutic proteins from CHO cells.
References
Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P, Mermod N: Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nature Methods. 2007, 4: 747-753. Epub 2007 Aug 5
Ley D, Harraghy N, Le Fourn V, Bire S, Girod PA, Regamey A, Rouleux-Bonnin F, Bigot Y, Mermod N: MAR Elements and Transposons for Improved Transgene Integration and Expression. PLoS One. 2013, 8: e62784-
Le Fourn V, Girod PA, Buceta M, Regamey A, Mermod N: CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab Eng. 2013, Feb 1. pii: S1096-7176(13)00002-5. doi: 10.1016/j.ymben.2012.12.003. [Epub ahead of print], [http://www.ncbi.nlm.nih.gov/pubmed/23380542]
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Girod, PA., Le Fourn, V., Calabrese, D. et al. High performance CHO cell line development platform for enhanced production of recombinant proteins including difficult-to-express proteins. BMC Proc 7 (Suppl 6), P75 (2013). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1753-6561-7-S6-P75
Published:
DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1753-6561-7-S6-P75