
RESEARCH Open Access

Carbon monoxide poisoning: a prediction
model using meteorological factors and air
pollutant
Hai-Lin Ruan1, Wang-Shen Deng1, Yao Wang1, Jian-Bing Chen2, Wei-Liang Hong3, Shan-Shan Ye1 and
Zhuo-Jun Hu4*

From The 20th International Conference on Bioinformatics & Computational Biology (BIOCOMP 2019)
Las Vegas, NV, USA. 29 July-01 August 2019

Abstract

Background: While the influence of meteorology on carbon monoxide (CO) poisoning has been reported, few
data are available on the association between air pollutants and the prediction of CO poisoning. Our objective is to
explore meteorological and pollutant patterns associated with CO poisoning and to establish a predictive model.

Results: CO poisoning was found to be significantly associated with meteorological and pollutant patterns: low
temperatures, low wind speeds, low air concentrations of sulfur dioxide (SO2) and ozone (O38h), and high daily
temperature changes and ambient CO (r absolute value range: 0.079 to 0.232, all P values < 0.01). Based on the
above factors, a predictive model was established: “logitPj = aj - 0.193 * temperature - 0.228 * wind speed + 0.221 *
24 h temperature change + 1.25 * CO - 0.0176 * SO2 + 0.0008 *O38h; j = 1, 2, 3, 4; a1 = -4.12, a2 = -2.93, a3 = -1.98,
a4 = -0.92.” The proposed prediction model based on combined factors showed better predictive capacity than a
model using only meteorological factors as a predictor.

Conclusion: Low temperatures, wind speed, and SO2 and high daily temperature changes, O38h, and CO are
related to CO poisoning. Using both meteorological and pollutant factors as predictors could help facilitate the
prevention of CO poisoning.
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Background
Carbon monoxide (CO) poisoning is the main cause of
emergency department admissions, and it is a leading
cause of death from poisoning worldwide [1]. Studies
showed that CO poisoning affects 50,000 people per year
in the United States [2] and that most cases are uninten-
tional [3]. Domicile-related CO poisoning mostly occurs
in night and is difficult to detect [4]. Hence, the

development of effective prediction for CO poisoning is
of great public health importance. In China, domicile-
related CO poisoning prevails with the main sources of
CO being biomass and coal stoves [5].
Many studies have explored how meteorological pat-

terns influence the prevalence of CO poisoning, which
largely occurs in winter and is associated with low me-
teorological temperatures, low barometric pressure and
low wind speeds [6]. Weather patterns influence pollu-
tant distributions, and their combination might thus play
important roles in the initiation of domicile-related CO
poisoning [7]. As local real-time meteorological and

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: 13978061988@163.com; drhuzhuojun@163.com
4Department of Respiration, Liuzhou Worker’s Hospital, The Fourth Affiliated
Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, PR China
Full list of author information is available at the end of the article

BMC ProceedingsRuan et al. BMC Proceedings 2021, 15(Suppl 1):1
https://doi.org/10.1186/s12919-021-00206-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12919-021-00206-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:13978061988@163.com
mailto:drhuzhuojun@163.com


pollutant data are easy to obtain, they may serve as ef-
fective predictors. However, few data are available on
pollutant patterns related to CO poisoning. Over the
past two decades, several studies have been published on
many aspects of CO poisoning in the realms of patho-
physiology, diagnosis, and clinical management along
with evidence-based recommendations for optimal clin-
ical practice [4]. Though many improvements have been
made, CO poisoning remains a serious problem world-
wide and especially in developing countries [8]. Develop-
ing effective forecasting methods could help better
prevent the poorly understood and collectively appearing
results of poisoning, but their prediction has been largely
not explored and their effects remain unclear.
Publications on CO poisoning and associated deaths

occurring in mainland China are very limited [8, 9], and
there is a paucity of work on how meteorological and
pollutant patterns influence CO poisoning. Hence, the
aim of the present study was to characterize meteoro-
logical and pollutant patterns associated with CO poi-
soning in Liuzhou (a city in southern China) and to
explore a prediction model for this issue.

Results
Monthly distribution of CO poisoning
The cases of CO poisoning showed a pattern of annual
cyclicity with a peak occurring from December to March
(Fig. 1) and with cases ranging from 0 to 500 per month.
The cases of CO poisoning in January of 2016 and 2017
was at top, but an abruptly decrease occurred in that
month of 2015 year. Cases of CO poisoning recorded

from December to March account for more than 80% of
all cases occurring from 2015 to 2017.

Missing value processing and air pollutant levels
The days with missing value of pollutant factor (ap-
proximately 0.2–0.5%) were excluded from the ana-
lysis. From 2015 to 2017, the daily mean
concentrations of SO2, NO2, CO, and O38h were
24.82 μg/m3, 26.11 μg/m3, 1.048 mg/m3, and 87.51
μg/m3, respectively, and daily mean concentrations of
PM10 and PM2.5 were 74.98 and 53.13 μg/m3, re-
spectively (Additional file 1: Table S1). Overall, air
pollutant concentrations were low, though some were
in a moderate level according to China Ambient Air
Quality Standards (GB 3095–2012).

Correlations between meteorological and pollutant
parameters and the occurrence of CO poisoning
Relationships between the occurrence of CO poisoning
and meteorological parameters (temperature, air pres-
sure, humidity, wind direction and wind speed) and pol-
lutant parameters (SO2, NO2, PM10, PM2.5, CO, and
O38h) were analyzed. We found that CO poisoning was
significantly and inversely associated with temperatures,
24-h atmospheric pressure changes, wind speeds and
ozone (O38h) (r ranges: − 0.162 to − 0.409, all Ps < 0.001)
and positively associated with 24-h temperature changes,
atmospheric pressure, humidity, and pollutants (SO2,
NO2, PM2.5, PM10, and CO) (r ranges: 0.085 to 0.371, all
Ps < 0.01) (Table 1 and Additional file 1: Table S2).
Overall, the association of temperature-related indices
with CO poisoning was stronger among meteorology
indices, while it was stronger for NO2 (followed by CO
and PM2.5) among pollutant indices.
A partial correlation analysis showed that temperature,

wind speed, SO2 and O38h (R ranges: − 0.079 to − 0.152,
all Ps < 0.01) were inversely correlated with CO poison-
ing incidence, and 24-h temperature change and air CO
concentration (R ranges: 0.098–0.232, all Ps < 0.01) were
positively correlated with CO poisoning incidence
(Table 2). No significant correlations were found for
other indices. Thus, in further prediction analysis, these
six indices with significant partial correlations with CO
poisoning were used for predictors.
Logistic regression analyses of daily (Fig. 2) and

monthly (Figure S1) CO poisoning levels were con-
ducted separately, and the result showed that among the
all parameters evaluated, CO poisoning was most closely
associated with temperature, followed by air pressure
and O38h; among environmental factors, CO poisoning
was most closely associated with CO concentration,
followed by PM10.

Fig. 1 Monthly distribution of CO poisoning from 2015 to 2017
in Liuzhou
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Ordinal logistic regression of CO poisoning risk levels and
prediction model establishment
Results of our ordinal regression analyses showed that
temperature (β: -0.193, OR: 0.82, 95% CI: 0.80, 0.85) was in-
versely associated with CO poisoning, whereas 24-h
temperature difference (β: 0.221, OR: 1.25, 95% CI: 1.18,
1.31) and CO (β: 1.25, OR: 3.48, 95% CI: 2.82, 4.14) (all Ps <
0.001) were positively associated with CO poisoning
(Table 3). Wind speeds (β: -0.228, OR: 0.80, 95% CI: 0.54,

1.06; P = 0.086) and SO2 (β: -0.018, OR: 0.98, 95% CI: 0.96,
1.00; P = 0.058) were marginally associated with CO poi-
soning. Null associations were found for O38h (β: 0.0008,
OR: 1.00, 95% CI: 1.00, 1.01; P = 0.766). These results
showed that CO poisoning was closely related with the am-
bient CO concentration, being 3.48 times more likely to
occur along with per 1mg/m3 increase in ambient CO
concentrations and 1.25 times more likely to occur at per
1 °C increase in 24 h temperature change. In addition, we
found that 0.82 times less possibility of CO poisoning oc-
curred along with per 1 °C decrease in temperature.
Based on the regression coefficient, prediction models for

CO poisoning grades risk was established as follows: 1:
using single meteorological factor as prediction factors and
2: using combined meteorological and pollutant factor as
prediction factors. Single-factor and combined-factor pre-
diction was conducted separately to fit a better model. A
lower Akaike information criterion (AIC) value denotes a
stronger model fit. Two fitting models were shown below:

1: logitPj = aj - 0.195 * temperature - 0.356 * wind
speed + 0.224 * 24 h temperature change

j ¼ 1; 2; 3; 4

a1 ¼ − 5:32; a2 ¼ − 4:15; a3 ¼ − 3:23; a4 ¼
− 2:20; AIC ¼ 1777

ð1Þ

2: logitPj = aj - 0.193 * temperature - 0.228 * wind
speed + 0.221 * 24 h temperature change + 1.25 *
CO - 0.018 * SO2 + 0.0008 *O38h;

Table 1 Pearson correlation between CO poisoning admission and meteorological parameters

Mean
temperature

24-h
temperature
difference

Mean
atmospheric
pressure

24-h atmospheric
pressure change

Humidity Maximum
wind
direction

Mean
wind
speed

CO
poisoning
cases

Mean temperature 1

24-h temperature
change

0.164† 1

Mean atmospheric
pressure

−0.881† − 0.123† 1

24-h atmospheric
pressure change

− 0.095‡ − 0.546† 0.200† 1

Humidity −0.023 − 0.04 − 0.228† − 0.139† 1

Maximum wind
direction

−0.069‡ −0.137† 0.030 0.123† 0.117† 1

Mean wind speed 0.183† −0.166† − 0.155† 0.245† − 0.257† 0.143† 1

CO poisoning
cases

−0.409† 0.240† 0.353† −0.162† 0.085‡ 0.049 −0.269† 1

Abbreviation: CO Carbon monoxide
†P-value for correlation < 0.001
‡P-value for correlation between 0.001 and 0.05

Table 2 Partial correlation between CO poisoning admission
and meteorological and environmental factors

Factors Coefficient P-value

Mean temperature, °C −0.152 < 0.001

24-h temperature change, °Ca 0.232 < 0.001

Mean atmospheric pressure, hPa −0.004 0.882

24-h atmospheric pressure change, hPaa 0.030 0.326

Humidity, % −0.022 0.464

Maximum wind direction, ° 0.057 0.059

Mean wind speed, m/s −0.079 0.009

SO2, ug/m
3 −0.112 < 0.001

NO2, ug/m
3 0.021 0.488

PM10, ug/m
3 0.046 0.134

CO, mg/m3 0.098 0.001

O38h, ug/m
3 −0.106 < 0.001

PM2.5, ug/m
3 −0.010 0.734

Data are shown as partial correlation coefficient (significance)
Abbreviations: CO Carbon monoxide, NO2 Nitrogen dioxide, O38h Ozone, PM
Particulate matter, SO2 Sulfur dioxide
aThe value was calculated as difference on the second day minus the value on
the first day
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Fig. 2 Logistic regression of CO poisoning by daily mean meteorological and pollutant factors. Abbreviation: CO, carbon monoxide; O3, ozone;
SO2, sulfur dioxide

Table 3 Ordinal logistic regression of CO poisoning admission by meteorological and environmental factors in total patients

Parameters Coefficients Std. Error OR (95% CI) P-values

Mean temperature, °C −0.193 0.015 0.82 (0.80, 0.85) < 0.001

Mean wind speed, m/s −0.228 0.133 0.80 (0.54, 1.06) 0.086

24-h temperature change, °C 0.221 0.034 1.25 (1.18, 1.31) < 0.001

CO, mg/m3 1.25 0.337 3.48 (2.82, 4.14) < 0.001

SO2, ug/m
3 −0.018 0.009 0.98 (0.96, 1.00) 0.058

O38h, ug/m
3 0.0008 0.003 1.00 (1.00, 1.01) 0.766

Intercepts

1|2 −4.12 0.595 – < 0.001

2|3 −2.93 0.584 – < 0.001

3|4 −1.98 0.576 – < 0.001

4|5 −0.92 0.576 – 0.108

Residual Deviance: 1747
AIC: 1767
Likelihood ratio tests was conducted for ordinal regression models (P < 0.001)
Abbreviation: CO Carbon monoxide, O3 Ozone, SO2 Sulfur dioxide
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j ¼ 1; 2; 3; 4;

a1 ¼ − 4:12; a2 ¼ − 2:93; a3 ¼ − 1:98; a4 ¼ − 0:92; AIC ¼ 1767:

ð2Þ

According to AIC standards, we identified that the
combined-factor model with pollutant factors had a bet-
ter goodness of fit than the single meteorological factor
model.

Examination of the CO poisoning prediction model
Prediction models were examined using actual CO poi-
soning levels in 2017 and the prediction potential were
analyzed, which were shown in Fig. 3 and Additional file
1: Table S3. The boxplots showed that the median actual
cases of CO poisoning gradually increased with predict-
ive grades (P-diff < 0.001), i.e. the actual poisoning case
number was lowest in grade 1 and increased gradually in
grade 2–5 (Fig. 3). To assess the comprehensive predic-
tion power of the models, we calculated average effective
prediction rate in two extreme grades (Grade 1 & 5).
Single-factor model showed an effective rate of 83.8%
(average of 145/152 [Grade 1] and 47/65 [Grade 5]),
slightly lower than that of 84.4% (average of 142/152
[Grade 1] and 49/65 [Grade 5]) in the combined-factor
model. In addition, single-factor model predicted 0 days
for Grade 4 and was presumed to be a little weaker in
predicting serious poisoning grades compared with the
combined model. Altogether, the single meteorological
factors can predict the occurrence of CO poisoning
cases, but the combined model with pollutant factors is
more accurate and performs better especially for serious
grades of CO poisoning.

Discussion
Our data show that for the city of Liuzhou, meteoro-
logical and pollutant patterns of low temperatures, low
wind speeds, low SO2 and high CO and O38h levels were
related to CO poisoning incidence. Among these, a
prominent positive association between air CO and poi-
soning grades and an inverse association between
temperature and poisoning grades were found. A predic-
tion model based on those parameters can predict poi-
soning cases well, and the combined model with air
pollutant factor are more accurate and perform better
than models based on meteorological factors alone. Con-
sidering both meteorological and pollutant parameters
as prediction factors will thus play a role in the preven-
tion of CO poisoning.
Some previous studies have reported that domicile-re-

lated CO poisoning mainly occurred in cold months and
at lower temperatures. Climate conditions influence air
pollutant distributions. Cases of CO poisoning was se-
vere worldwide. However, few studies have investigated
the association between CO poisoning and climatic fac-
tors such as wind speed, daily temperatures and air pol-
lutants [6, 10]. A population-based case-control study of
Taiwan found a 2.15-fold increase in CO poisoning mor-
tality in cold periods with maximum daily temperatures
of less than 18.4 °C than in warm periods with daily
maximum temperatures of 27.1 °C or greater [10]. The
onset of colder weather typically results in behavior
changes (e.g., higher levels of indoor heating). Xie J et al.
found that wind speed was the main factor that affects
CO poisoning accidents which occurred in dwellings
and that ventilation, smoke emissions, differences be-
tween indoor and outdoor temperatures, low daily gas
pressure changes could aggravate CO poisoning occur-
rence [11]. In addition, low wind velocities, ground-level

Fig. 3 Median comparison of CO poisoning cases of different forecast grade. a Combing meteorological and environmental factors as prediction
factor, b single meteorological factors as prediction factor
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inversion and fog aggravate domicile-derived CO poi-
soning, as they impede the rise of combustion emissions
through chimneys and the dispersal of indoor CO [7,
12]. CO poisoning outbreaks are also related to storms
and power outages [13].
We consistently found temperatures to be the most

important protection against CO poisoning along with
wind speed. Climate conditions were also found to be
closely related to air pollutants. Low temperatures and
wind speeds lead to limited air movements, potentially
increasing concentrations of air pollutants. A series of
studies have shown that ambient air pollutants SO2, CO,
O3, PM10, PM2.5, and NO2 can induce a variety of acute
symptoms [14] and are related to hospitalizations for re-
spiratory [15, 16] and cardiovascular diseases [17, 18].
Notably, CO is reportedly strongly associated with mor-
tality and heart failure [19]. While few studies have ex-
plored the influence of air pollutants on CO poisoning,
except one study found a poor pollutant distribution on
days with poisoning events [7]. Epidemiological studies
have also shown that air pollutants contribute to daily
mortality [20] and that the association remains even at
very low pollution levels [21]. The specific effects of air
CO and other pollutants on the incidence of CO poison-
ing are unknown. Our data show strong independent
positive effects of pollutant (SO2, CO and O38h) distri-
butions and CO poisoning. In particular, a 3.48-fold
higher risk of CO poisoning was found for per 1 mg/m3
increase in air CO concentration (OR [95% CI], 3.48
[2.82, 4.14], P < 0.001). Among underlying mechanisms
involved, it was assumptive that high outdoor CO con-
centrations might impede the diffusion of indoor CO
gas. To our knowledge, no other study has investigated
the correlation between ambient CO concentration and
indoor CO poisoning. Future studies must clarify under-
lying mechanisms involved.
The exposure dose of CO depends on its air concentra-

tion, the exposure time and the patient’s breathing volume
per minute. Indoor smoke elevates baseline carboxyhemo-
globin levels [22, 23]. Other indoor sources include ex-
haust from poorly ventilated gas- and oil-burning home
appliances and the infiltration of outdoor pollutants [24].
In unpolluted ambient air, concentrations of CO range
from 0.02–1.0 ppm; however, in urban areas, CO concen-
trations can increase 10-fold in periods of atmospheric
stagnation [25, 26] (i.e., during temperature inversions in
winter or when sedentary air masses form in summer).
CO levels of approximately 100 ppm can be detected in
kitchens when a gas stove is used for cooking or when
there is a gas leak [24]. The Chinese government recom-
mends that the indoor CO concentration not exceed a
maximum of 50 ppm. Hence, preventing CO leaks and re-
ducing the ambient CO concentration are central to the
prevention of CO poisoning.

A single factor may not account for the comprehensive
causes of CO poisoning. Previous studies have examined
the effects of meteorological change on CO poisoning,
and our data show that pollutant-related factors might
also play an important role in CO poisoning incidence.
Meteorological and pollutant patterns—low air tempera-
tures, wind speeds, and SO2 levels and high 24-h
temperature differences, CO levels and O38h concentra-
tions—might increase the incidence of domicile-related
CO poisoning. In this study, we established two predic-
tion models: a meteorological model covering
temperature, 24 h temperature changes, and wind speed
and a model covering meteorological and pollutant-
related factors (SO2, CO and O38h). Both models effect-
ively predict CO poisoning occurrence. The combined
model is superior to the single factor model in the fol-
lowing respects. First, the combined model is more ac-
curate when applied to extreme grades (84.4%, which is
slightly higher than the value of 83.8% found for the
single-factor model). Second, the combined-factor model
is more effective at predicting serious poisoning grades
than the single-factor model. Third, the single-factor
model cannot identify cases of level 4 poisoning. These
results show that both meteorological and air pollutant
parameters must be considered for the prediction of CO
poisoning [12]. Future studies must validate these find-
ings and explore more underlying mechanisms through
which outdoor environmental conditions influence CO
poisoning. In addition, high-risk populations (e.g., the
elderly and children) must be closely considered.
CO poisoning is preventable and avoidable. Automo-

biles and cooking and heating appliances have long been
regarded as the main environmental sources of CO [27].
Gas stoves and water heaters are very popular in the city
of Guangxi. A gas leak due to improper installation or
aging parts can result in CO poisoning. Thus, safety edu-
cation designed to increase awareness of CO poisoning
and of ways to reduce CO production should be effective
at reducing the occurrence of domicile-related poisoning
[28, 29]. Public service warnings and government super-
vision can also help prevent poisoning events, especially
during storms [30]. As we found that combined-factor
prediction shows strong prevention potential, incorpor-
ating CO poisoning predictions into weather broadcast
programs could raise public awareness of CO poisoning
occurrence [7]. Effective air purification measures taken
by environmental protection agencies could also im-
prove the prevention of CO poisoning, and installing
CO detectors in residences have favorable cost benefits
[3], which can be used as an important secondary pre-
vention measure [31]. Finally, prompt treatment mea-
sures including fast and correct diagnosis and effective
therapy should decrease the incidence of death from CO
poisoning [30].
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This study presents some strengths. First, we are the
first to analyze the influence of pollutants on CO poi-
soning and to establish a prediction model of CO poi-
soning based on meteorological factors alone and on a
combination with environmental parameters. Second, in
applying our models to actual cases of CO poisoning, we
found that the model considering both meteorological
and pollutant parameters can predict CO poisoning well
and performs better than the model based on meteoro-
logical factors alone in its accuracy and predictive poten-
tial for high poisoning grades. This study also has some
limitations. First, the medical records considered in this
study represent cases of CO poisoning in the studied
region but not include cases with missed diagnoses,
patients who died close to sources of CO poisoning and
were not admitted to a designated hospital. Nevertheless,
cases of CO poisoning considered in this study were
collected from four designated hospitals for CO poisoning,
which ensured a more comprehensive and reliable dataset.
Second, while we established a prediction model based on
multiple meteorological and environmental factors and
validated the model in several ways, the model only
xaccounts for part etiological causes of CO poisoning.

Conclusions
Temperatures, wind speeds, daily temperature changes,
ambient SO2, CO and O38h serve as significant predic-
tors of CO poisoning. The proposed prediction models
based on meteorological and pollutant parameters can
help prevent CO poisoning by targeting high-risk popu-
lations. The developed model considering both meteoro-
logical and pollutant parameters offers superior
predictive power than the proposed single-factor model,
especially for days of high poisoning risk. Future studies
must validate our findings.

Methods
Population and data source
CO poisoning data for 2015–2017 were collected from
the emergency department of four hospitals which were
designated by Liuzhou Health Commission for CO poi-
soning. The medical records of all eligible patients were
reviewed, and cases of suicide and attempted suicide and
accidental CO poisoning were excluded. Meteorological
and pollutant data for the same period were obtained
from the Liuzhou Meteorological Bureau and Liuzhou
Environmental Protection Agency, respectively. All me-
teorological and pollutant parameters were taken from
the 6 representative monitoring sites.

CO poisoning gradation
To construct a prediction model of CO poisoning, we
graded CO poisoning into 5 levels according to the
number of daily cases of CO poisoning as follows: Level

1, 0 cases of CO poisoning daily; Level 2, 1 case of CO
poisoning daily; Level 3, a moderate risk of daily CO poi-
soning with > 1 and ≤ 3 cases; Level 4, a high risk of daily
CO poisoning with > 3 and ≤ 7 cases; and Level 5, a very
high risk of daily CO poisoning with > 7 cases.

Data and statistical analysis
First, to investigate possible correlations between the oc-
currence of CO poisoning and meteorological and pollu-
tant parameters, records of meteorological (temperature,
gas pressure and daily changes, humidity, wind direction,
and wind speed) and air pollutant parameters (sulfur di-
oxide (SO2), nitrogen dioxide (NO2), inhalable particu-
late matter (PM)10, PM2.5, CO, and ozone (O38h)) for
Liuzhou for 2015–2017 were collected. Mean daily me-
teorological and pollutant parameters and cases of CO
poisoning were analyzed.
Further, Pearson correlation analyses were performed

to examine the correlation between meteorological and
pollutant factors and CO poisoning. Partial correlation
analyses were conducted with related parameters con-
trolled. Indices of meteorological and pollutant parame-
ters showing a significant partial correlation (P < 0.05)
with CO poisoning were selected as prediction factors.
Logistic regression was used to evaluate the association
between CO poisoning levels and daily and monthly
mean values of the single prediction factors. Multivari-
able ordinal logistic regression was used to evaluate co-
efficients and odds ratios (95% CI) per 1 unit increase in
the predictive factors based on data for 2015 and 2016.
Then, the coefficient of predictors obtained was used to
establish a prediction model of CO poisoning.
We used data for 2017 to examine the predictive

power of both models. From the probability model
established, we obtained predictive CO poisoning risk
levels for each day of 2017 based on intraday meteoro-
logical and pollutant information and in turn determined
the most likely risk levels. The Kolmogorov-Smirnov test
was used to examine differences in average cases of CO
poisoning based on pairwise prediction grades. All ana-
lyses were conducted using R3.5 (https://www.r-project.
org/) where a 2-tailed probability of less than 0.05 was
considered statistically significant.
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