
PROCEEDINGS Open Access

Family-based genome-wide association of
inflammation biomarkers and fenofibrate
treatment response in the GOLDN study
Sarmistha Das†, Pronoy Kanti Mondal†, Saurabh Ghosh and Indranil Mukhopadhyay*

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4 - 8 March 2017

Abstract

In this paper we analyzed whole-genome genetic information provided by GAW20 from the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study for family data. Lipid levels such as triglycerides (TGs) and high-
density lipoprotein (HDL) are measured at different time points before and after administration of an anti-inflammatory
drug fenofibrate. Apart from that, the data contain some covariates and whole-genome genotype information. We
propose 2 novel approaches based on Henderson’s iterative mixed model to identify associated loci corresponding to
(a) inflammatory biomarkers like TGs and HDLs together over time, and (b) the response to fenofibrate treatment. We
developed a mixed-model approach using both TG and HDL phenotypes at all 4 time points for a genetic association
study whereas we used TGs only to study genetic association with response to the drug. We expect that use of
complete family data in a longitudinal framework under a single model involving the appropriate correlation structures
would be able to exploit the maximum possible information contained in the sample. Our analysis of whole-genome
single nucleotide polymorphisms (SNPs) and genomic regions corresponding to drug treatment finds no significant
locus after multiple correction. Arguably, the moderately small sample size of the data set, as compared to the sample
size usually used in genome-wide association studies (GWAS), could be a reason for such a result. Nevertheless, we
report the top 20 SNPs associated with the phenotypes, and the top 20 SNPs and genomic regions associated with a
response to fenofibrate treatment. Application of our methods to larger GWAS and further functional validation of the
reported top SNPs and genomic regions might provide important biological insight into the genetic constitution of
the trait.

Background
Understanding the genetic architecture underlying com-
plex phenotypes is crucial in decoding disease mecha-
nisms as well as treatment and drug development.
Genome-wide association studies (GWAS) have contrib-
uted significantly to the identification of associated vari-
ants with numerous traits. Although the sample size
requirement of GWAS is high, the proportion of the dis-
ease risk explained by a single variant always remains low.
However, availability of longitudinal data on multiple phe-
notypes might carry more information in identifying

associated variants. The Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN) study provides a data set
with triglyceride (TG) and high-density lipoprotein (HDL)
levels at 4 time points for a fixed set of families with few
missing observations during follow-up. Consequently,
given a moderate sample size, reduction of the multiple
testing burden and/or use of longitudinal information is
required. Moreover, with available data on multiple inter-
acting phenotypes, it is informative to study both the inher-
ent environmental correlation and the genetic correlation.
Increased levels of TG and decreased HDL levels are

well-known causes of heart disease. So we developed
one model that captures the genome-wide genetic asso-
ciation with interacting phenotypes, that is, TG and
HDL, over time by introducing both a temporal
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covariance structure and a genetic covariance structure
between phenotype measurements. Our method is ex-
pected to increase power as a result of the inclusion of
more information through genetic and environmental
correlation structures.
On the other hand, fenofibrate is an antiinflammatory

drug, well known for TG-lowering effects. Some studies re-
port modulation of a lipid response to fenofibrate as the
result of genetic variants involved in lipid metabolism [1],
but the response to treatment by fenofibrate varies across
individuals in a population [2]. Some GWAS ventured to
find associated variants behind such a response, but met
no success in the sense of identifying variants significantly
associated with fenofibrate response [3]. The reasons might
be low sample size, noncomparable baseline lipid profiles,
and environmental exposures of the individuals. Thus,
along with simple GWAS, we studied multiloci association
of response to fenofibrate treatment with the genomic
regions, which reduces the chance of missing a moderately
associated locus. We also examined the association of sin-
gle variants using multiple TG and HDL phenotypes in the
GOLDN study. We found that 1 single nucleotide poly-
morphism (SNP) is associated with the TG and HDL phe-
notypes, although we did not find any significant SNP or
gene that is associated with the drug response. It is import-
ant to note that because the sample in this study is not
very large, we report a few top significant loci that might
be associated with phenotype and response to drug.

Methods
We analyzed the real data provided by GAW20 (ie,
GOLDN study) data set [4]. The data set contains data on
age, smoking status, etc. as covariates, pedigree informa-
tion, and genome-wide genetic variation, as well as TG
and HDL levels measured before and after the drug at 4
time points. Information on genetic variation was available
for 822 individuals, while other information, except kin-
ship structure, had a sample size of 1105 individuals. Pedi-
gree data was available for 4151 individuals. The kinship
structure, covariates, and TG and HDL phenotypes were
available for all 822 individuals, but genotype information
was missing for 1 individual. Consequently, in the subse-
quent analysis we used the remaining 821 subjects. Next,
the missing genotypes and monomorphic SNPs were re-
moved from the analysis. For variants with only 2 ob-
served genotypes, we eliminated the SNP if 1 genotype
frequency was < 5%. We imputed missing phenotype data
using a mixed-model approach under the null model, and
used log–log transformation of the phenotype variables
for the entire analysis. This transformation made the data
normally distributed and, hence, the resultant test statistic
followed a standard distribution under a null hypothesis
(H0) of no association. During imputation, we assumed
constant heritability, and this value was from an existing

study [5]. We calculated p values using the asymptotic dis-
tribution of test statistics under H0 after
Benjamini-Hochberg (BH) correction.
To meet the objectives as stated in the previous sec-

tion, we first do a GWAS based on longitudinal data
with TG and HDL together as phenotypes. We use a
mixed model that includes environmental as well as gen-
etic correlation structure.
With TG and HDL at all time points as response vec-

tor, our model is:

YTG
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� �
¼ XTGβTG þ ZTGuTG

XHDLβHDL þ ZHDLuHDL

� �
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4 Þ0 denote TG and HDL re-
spectively, at 4 time points, for n individuals. In this
model, XTG and XHDL are fixed effects design matrices,
where XTG = XHDL = [I4⊗ 1n 14⊗ gn], gn is the genotype
vector for n individuals at a single marker locus, uTG

and uHDLare random effect vectors for n individuals, and
ZTG = ZHDL = 14⊗ In is the corresponding matrix. Here

βTG ¼ ðβTG1 ; βTG2 ; βTG3 ; βTG4 ; βTG5 Þ
0
, where the first 4 compo-

nents are temporal effects for 4 different time points that
includes the drug effect and βTG5 is the effect of the SNP.
We assume that, VarðuTGÞ ¼ σ2u;TGK ;VarðuHDLÞ ¼ σ2u;HDL
K where K is the kinship matrix,Var(εTG) =ΣTG⊗ In,Var(-
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where σ2
TG is the common variance of TG at all 4 time

points and the correlation coefficient matrix is parame-
terized by three parameters: ρ1, TG, ρ2, TG and ρ3, TG.
Similarly we define βTG and ΣHDL. Now, denoting ρg and
ρε as genetic and environmental correlations respect-
ively, we assume the correlation structure as:
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We test the null hypothesis of no genetic association
of an SNP with TG and HDL using a likelihood ratio
test. The asymptotic distribution of the log-likelihood
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ratio statistic can be shown to follow a χ22 distribution.
We apply this test at the GWAS level after appropriate
multiple-testing correction.
To address our second objective (ie, to test association

of response to fenofibrate treatment), we model our data
using Henderson’s mixed-model approach with adequate
modification. Incorporating correlation structure among
family members, we propose our model as

Y ¼ Xβþ Zuþ ε ð2Þ
where Y is the vector of changes in phenotype (measured
as log-log of TG) before and after the drug treatment; X is
the design matrix of covariates, namely, age, smoking sta-
tus, and SNP/genotypes in a genomic region (not in link-
age disequilibrium); β is the associated fixed effect
parameter; Z is the design matrix of random components;
u is the random effect of the family; and ε is the error
component. We assume u � Nð0; σ2gKÞ , where K is the
kinship matrix and ε � Nð0; σ2

eRÞ independently of u.
Hence, V ðY Þ ¼ σ2gZKZ0 þ σ2eR. Note that because we are

dealing with family data, a non-diagonal positive definite
matrix R appears in the variance-covariance matrix of ε.
During analysis, we use 778 individuals after removing

those with no response either before or after drug treat-
ment. But in case of missing response at one of the time
points before (after) drug treatment, we impute it with
the other response value. To calculate kinship matrix we
use R package “kinship2” with the entire family data. To
find association of genomic regions, we first identify the
genomic regions and then remove the SNPs that are in
linkage disequilibrium (r2 > 0.5). The genomic regions
are basically (a) the genic regions, and (b) the intergenic
regions lying between 2 consecutive genes, that overlap
the genotyped SNPs in our data. We use Henderson’s it-
erative procedure for mixed model approach [6] after
substantial modification and after adjusting for age,
smoking status as fixed effects, and random genetic ef-
fect within a family. We use the restricted maximum
likelihood (REML) approach to test our H0 of no associ-
ation, adopting the expectation-maximization (EM) algo-
rithm for parameter estimation.
Maximization of joint likelihood of Y and u and eq. (3)

[6] provide the best linear unbiased predictors (BLUPs)
for the random component under normal assumption of
the response variable.

X 0R−1Xβbþ X 0R−1Zub
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ub
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So to test the association of (a) whole-genome SNPs
and (b) genomic regions, with response to the drug
treatment, our null hypothesis will be, H0 :Mβ = 0 for an

arbitrary p × q matrix M with rank(M) = p. Thus, if n be
the number of observations and rank(M) = p, the test
statistic [7],
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Mβ̂
� �0
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−1
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� �−1
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−1
y X and V̂ y ¼ dVar yð Þ:

�
We developed the above procedure to test association

of multiple SNPs (genomic regions), which reduces the
multiple-testing burden. However, this test can be seen
as a single-marker association test that we have used to
perform our GWAS study with appropriate
multiple-testing correction.

Results
With longitudinal information using multiple pheno-
types we identified only 1 significant SNP (Fig. 1) after
BH correction. The SNP is rs2880301, located at TPTE2
in an intron. rs2880301 is reported to be associated with
HDL particle diameter and low-density lipoprotein
(LDL) particle diameter [8] and is also known to confer
protection against hepatocellular carcinoma [9]. How-
ever, we think that there might be other SNPs that re-
main unidentified as a consequence of small sample size.
Hence we report the top 20 SNPs based on p value in
Table 1. rs752273 is reported to be associated with car-
diovascular diseases [10] while rs2896368 is known to be
associated with α1-antitrypsin level [11].
To test the null hypothesis of no association with drug

response, we examined 243,593 whole-genome SNPs
and 18,266 genomic regions. The genomic regions in
our study are (a) genic, that overlap the genotyped SNPs,
and (b) intergenic, that lie between 2 consecutive genes
and overlap the genotyped SNPs in the data set. After
BH correction, none of the SNPs nor genomic regions
showed significant association with the drug response
(Fig. 2). However, we report the top 20 SNPs (Table 2)
and top 20 genomic regions (Table 3). The moderately
small sample size of the data compared to most of the
GWAS might be a reason behind this result. Application
of our methods to larger GWAS and further functional
validation of the reported top loci might provide some
directive for studying inflammatory biomarkers and re-
sponse to fenofibrate treatment.

Discussion and conclusions
In this paper, we developed novel methods for (a)
GWAS using longitudinal data and (b) GWAS/genomic
region association with response to fenofibrate treatment
based on a family-based design. These methods are
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agnostic to the choice of phenotype and can be general-
ized to any such study. Although we could not detect
any novel biologically relevant locus that is significantly
associated with response to fenofibrate treatment, we
identified a few loci that are associated with TG and
HDL levels. Our belief is that the primary reason for
obtaining only a small number of significant association
findings is the much smaller sample size in our analyses
as compared to conventional GWAS. Validation in a lar-
ger sample might throw more light on the roles of the
top few significantly associated SNPs and/or genomic re-
gions in controlling TG and HDL levels. Nevertheless,
this study emphasizes the effect of administering fenofi-
brate to individuals with specific genetic profiles.
We pruned the available set of SNPs to an independ-

ent set of SNPs in our GWAS, primarily to reduce the
multiple-testing burden. Because many studies impute
SNPs, and hence augment the number of available SNPs,
to explore association findings for previously reported
SNPs that have not been genotyped, our strategy has a
caveat in the sense of reduction in the overall power of
the GWAS. Similarly, while our proposed method in-
volves simultaneous testing of multiple SNPs within a
gene in order to evaluate association at the gene level, it
may yield lower powers compared to the usual single
SNP analyses in GWAS.
We imputed the missing phenotype data using a

known heritability value [5] and have applied the EM al-
gorithm. Although studies show that such imputation

Fig. 1 Manhattan plot of genome-wide p values of SNPs on interacting phenotypes, namely, TG and HDL

Table 1 Top 20 SNPs associated with TG and HDL

Chr SNPs p Value Base position

13 rs2880301 1.095660 × 10− 9 18,998,534

4 rs1909882 3.610927 × 10− 7 170,922,834

4 rs12510928 3.610927 × 10− 7 170,954,378

8 rs6558172 1.148044 × 10−6 22,547,997

2 rs752273 1.183976 × 10−6 108,297,537

11 rs1793368 2.066321 × 10−6 96,521,084

14 rs2896268 2.448163 × 10−6 93,935,461

13 rs2770297 2.707521 × 10−6 46,344,666

4 rs6835612 3.468092 × 10−6 170,955,790

1 rs4844913 5.117515 × 10−6 208,134,740

3 rs6440833 5.392711 × 10−6 154,128,934

1 rs924297 5.693772 × 10−6 76,996,366

4 rs13113929 5.873701 × 10−6 169,320,943

11 rs1255523 5.999600 × 10−6 95,019,155

11 rs395297 6.692577 × 10−6 37,093,845

19 rs4805303 8.219183 × 10−6 34,106,471

11 rs7929919 8.890781 × 10−6 78,529,128

2 rs2353319 9.293606 × 10−6 204,594,629

2 rs4676175 1.016761 × 10− 5 108,054,810

18 rs2419041 1.017765 × 10− 5 26,293,205
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Fig. 2 Manhattan plot of genome wide p values corresponding to response of drug treatment on TGs

Table 2 Top 20 SNPs associated with fenofibrate treatment
response

Chr SNPs p Value

1 rs7555566 1.982194 × 10− 5

1 rs6664332 1.499459 × 10− 4

3 rs1401072 1.416564 × 10− 5

3 rs13072632 9.056298 × 10− 5

3 rs11564450 9.281710 × 10− 5

3 rs1631395 1.034264 × 10− 4

3 rs9311268 1.418409 × 10− 4

3 rs6599150 1.418409 × 10− 4

6 rs13217251 1.048927 × 10− 4

10 rs2482583 9.882478 × 10− 5

10 rs3122227 1.257541 × 10− 4

10 rs7917347 1.358690 × 10− 4

11 rs2406928 1.692430 × 10− 5

11 rs10790087 3.064359 × 10− 5

11 rs1940088 6.968692 × 10− 5

15 rs17777266 1.537405 × 10− 4

16 rs7197943 1.272486 × 10− 4

20 rs6075087 1.497509 × 10−4

20 rs11087178 1.497509 × 10− 4

22 rs10427772 1.160345 × 10− 4

Table 3 Top 20 genomic regions associated with fenofibrate
treatment

Chr Genomic regions p Value

1 intergenic.snps CAPZB LOC105378614 4.705439 × 10− 4

1 intergenic.snps RCC2 ARHGEF10L 6.471417 × 10− 4

2 snps SCN1A 6.896508 × 10− 4

3 snps ABCC5 1.877981 × 10− 4

3 snps PQLC2L 8.087247 × 10− 4

3 snps IQCJ-SCHIP1 8.150236 × 10− 4

4 intergenic.snps C4orf33 LOC101927282 2.817887 × 10− 4

5 snps FAM81B 4.593152 × 10− 4

5 snps PKD2L2 5.974084e × 10− 4

6 intergenic.snps LOC105377967 CEP85L 1.270536 × 10− 4

7 intergenic.snps NUPL2 GPNMB 7.784435 × 10− 4

8 snps TRPA1 4.326193 × 10− 5

9 intergenic.snps TNFSF8 TNC 1.822392 × 10− 4

9 intergenic.snps HACD4 IFNB1 2.491489 × 10− 4

9 intergenic.snps DEC1 LOC101928775 6.834450 × 10− 4

10 intergenic.snps MAP3K8 LYZL2 2.765323 × 10− 4

14 snps NEMF 3.979899 × 10− 5

18 snps LO × HD1 5.430775 × 10− 4

20 snps LINC01524 8.431111 × 10− 5

22 intergenic.snps MIR4762 WNT7B 4.120036 × 10− 4
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may lead to some loss of power and hence seems to be a
limitation of our current method, the intuition behind
the imputation strategy was to use the maximum pheno-
type data in our analyses. A more general model that in-
cludes the genotype data can be developed in a
likelihood framework for testing association, but this
would increase substantial computational complexity
while calculating the test statistic.
Association findings based on any real data set are

susceptible to being false positives. If these findings val-
idate previous reports of association, they are more likely
to be true positives. In case of novel significant findings,
it is necessary to either validate them in an independent
data set or, alternatively, to perform extensive simula-
tions under similar genotype and phenotype structures
to evaluate the false-positive rates of the underlying test
procedures.
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