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Abstract

To examine whether single-nucleotide polymorphism (SNP) by methylation interactions can be detected, we
analyzed GAW20 simulated triglycerides at visits 3 and 4 against baseline (visits 1 and 2) under 4 general linear
models and 2 tree-based models in 200 replications of a sample of 680 individuals. Effects for SNPs, methylation
cytosine-phosphate-guanine (CpG) effects, and interactions for SNP/CpG pairs were included. Causative SNPs/CpG
pairs distributed on autosomal chromosomes 1 to 20 were tested to examine sensitivity. We also tested
noncausative SNP/CpG pairs on chromosomes 21 and 22 to estimate the empirical null. We found reasonable
power to detect the main causative loci, with the exact power depending on sample size and strength of effects at
the SNP and CpG sites.

Background
Introduction
DNA methylation is an important epigenetic mark at
transcriptional start sites, regulatory elements, repeat se-
quences, or within a gene [1]. Methylation’s main effect
is to silence genes, which are dynamically regulated in
expression. Methylation/demethylation confers genome
stability, gene expression control, and contributions in
biological functions and development [2].
We analyzed GAW20 simulated methylation and tri-

glyceride (TG) levels at time points before and after
“genomethate” treatment. We examined Type I error
and power for identifying single-nucleotide polymor-
phisms (SNPs) by methylation interactions under several
methods with different models. We conducted analyses
with prior knowledge of solutions to the GAW20 prob-
lem. Our goal was to examine the feasibility of detecting
gene by methylation interactions.

Data
The GAW20 simulated data contains 200 replicates,
each with SNP by methylation interaction effects at 5
main effect SNP/CpG (cytosine-phosphate-guanine)
pairs and 100 very-small-effect “background” SNP sites.
All simulated causative SNPs were distributed on chro-
mosomes 1 to 20. Chromosomes 21 and 22 were left
without any simulated effects, so they could be used for
tests under the null distribution. We identified 2267
SNPs with nearby methylation markers on chromosomes
21 and 22, which we used to generate empirical null dis-
tributions for identifying SNP by methylation interac-
tions. For full details of the GAW20 simulation, please
refer to the data description paper Aslibekyan S, et al.
(2017) [3].

Methods
We focused on 4 methods. For the first 2 methods, we
developed a set of overlapping models:
Model 1a: Post = β0 + β1SNP + β2CpG + β3SNP ∗ CpG

+ βC + ε.
This is the generating model for the simulation: it in-

cludes SNP main effect, CpG methylation (expressed as
(1 −CpG) because less methylation results in more ex-
pression) and their interaction effect on posttreatment
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TGs. Post is the average of log (TG3) and log (TG4); β0
is the intercept; β1SNP is the SNP effect; β2CpG is the
methylation effect; β3SNP ∗ CpG is their interaction ef-
fect; βC corresponds to a vector of covariates [age, age2,
sex, and the average of log(TG1) and log(TG2) before
“genomethate” treatment (Pre)]; and ε is the residual.
Model 1b: Post = β0 + β1SNP ∗ CpG + βC + ε
This is a reduced version of model 1a that includes a

SNP-by-methylation interaction, but no SNP or methyla-
tion main effects. Because there are strong interaction
effects at the 5 main simulated SNP-by-CpG effect sites,
we wanted to test whether this model had better power
because of having fewer terms.
Model 2a: δTG = β0 + β1SNP + β2δ_CpG + β3SNP∗

δ_CpG + β
C
+ ε

This model represents a “reasonable” model that is not
the generating model. Because in practice the “true”
model is unknown, we also applied a model differing from
the generating model. Included are the main effect of the
SNP, the main effect δ_CpG (methylation change pre- to
posttreatment), and their interaction effect on the δTG
pre- to posttreatment [the change of average log (TG) at
times 3 and 4 versus average of log (TG) at times 1 and 2].
Here δTG is change of TG (Post – Pre); δ_CpG is the
methylation difference between visits 4 and 2; and βC is
the beta coefficient for the covariates (age, age2, and sex).
Model 2b: δTG = β0 + β1SNP

∗ δ_CpG + βC + ε
This is a reduced version of model 2a, in which only the

SNP by δ_CpG methylation interaction effect is included.
The rationale for this model was the same as with model 1b.
We applied the following 4 methods.

Method I: General linear models

We used Proc GLM in SAS for fitting linear models
by the least squares approach, and applied it to models
1a and 1b [4]. In this model, we accounted for the family
data by including pedigree ID as a random effect, which
can provide a sufficient method to account for the pri-
marily nuclear families found here.

Method II: Mixed models

We used mixed models to adjust for relatedness and
repeated measures by way of structured covariance
models. The parameters were estimated by the likeli-
hood technique using Proc MIXED in SAS, which was
applied to models 1a, 1b, 2a, and 2b [5]. With this
method, we included the family ID as a class variable
and used it as a “subject” variable, effectively making it a
random effect, similar to Method I.

Method III: Regression trees

Tree-based models nonparametrically predict out-
comes by partitioning data into bins based on rules
learned from the data. We use these to predict Post
(models 1a and 1b) using the 10 causative SNPs and
CpGs. Because the sample size of each replication is
relatively small (n = 680), we set the condition that in
the final leaves a minimum number of 10 can be consid-
ered as a limit for a final split. These analyses were per-
formed via SAS (v. 9.4) and SAS Data Mining (v. 14.1)
[5, 6]. The regression tree analyses presented here were
implemented at the full data level (200 replications
combined), which created a more generalizable applica-
tion case with similarity to the existing GWAS large
consortia data.

Method IV: Random forests

Random forests predict outcome variables by aver-
aging the predictions of a large number of uncorrelated
regression trees. This can allow for better model per-
formance in data sets with smaller sample size or many
predictors. For each replicate we created a forest of
10,000 trees to predict Post (models 1a and 1b) based on
the pretreatment level, age, sex, causative and back-
ground SNPs, and methylation sites (113 predictors).
We created this model using the scikit-learn software
package [7].

Table 1 Heritability estimates of trait Post (using SOLAR)

Trait/Marker(s) Mean Median Standard Deviation Software

Post [average of log (TG3) and log (TG4)] 0.4307 0.4313 0.0509 SOLAR

rs9661059 0.0210 0.0210 0.0050 b2 regression (SAS) from standardized dosage and
standardized phenotype

rs736004 0.0008 0.0005 0.0008 -″-

rs1012116 0.0070 0.0070 0.0030 -″-

rs10828412 0.0004 0.0002 0.0005 -″-

rs4399565 0.0090 0.0080 0.0030 -″-

100 background SNPs 0.0024 0.0011 0.0032 b2 regression (SAS) from standardized dosage and
standardized phenotype

Five main SNPs (β2 of a regression of standardized residuals on standardized dosage for each marker) and 100 background SNPs evaluated at 200 replications
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In addition, heritabilities were estimated at 2 levels:
at the full polygenic model using SOLAR (Sequential
Oligogenic Linkage Analysis Routines) software [8]
(http://solar-eclipse-genetics.org/) and at the single
SNP level, in this case squaring beta coefficient for
SNP (where using standardized dosages versus stan-
dardized residuals of a normally distributed response
variable after adjusting for covariates. The b2 in this
case provides an approximate estimate of additive
effect) [9].
To obtain an empirical null distribution for Methods I

and II, we identified 2267 SNP–CpG pairs on chromo-
somes 21 and 22, where there were no simulated causa-
tive SNPs. A pair of markers was identified by selecting
a SNP, and a CpG that is adjacent but has a higher
base-pair position than the SNP. For chromosome 21,
we formed 817 pairs from 10,385 SNPs and 4157 CpG
sites. For chromosome 22, we formed 1450 pairs from
9464 SNPs and 8381 CpG sites.

Results
Testing of Post (used in models 1a and 1b) for 200 replica-
tions, indicated a heritability of 43% (Table 1). Examination
of the traits distributions after log transformation suggested
the normal error assumption is not unreasonable and use
of linear regressive methods appropriate.
The power to detect causative SNP by methylation inter-

actions was modest to good with Methods I and II (Table 2).
The full GLM model (model 1a and Method I) gave power
ranging from 0.91 down to 0.20 with α = 0.05 for detecting
the SNP by methylation interaction at the 5 primary causa-
tive sites (Table 2). The reduced GLM model, which we
thought might perform better from having fewer terms,
had lower power for some sites and higher power for
others, depending on the strengths of the effects and the
levels of methylation at each site. The very-small-effect
“background” sites were slightly better detected by the re-
duced model (0.07 vs 0.06 for the full model), but power
was very poor in both cases for these tiny, but real, effects.

Table 2 Proportion of tests with p < 0.05 under several models with proc GLM and proc MIXED

Number of tests GLM model 1a GLM model 1b MIXED model 1a MIXED model 1b MIXED model 2a MIXED model 2b

cg0000036 * rs9661059 200 0.91 0.41 0.95 0.64 0.86 0.11

cg0004591 * rs1082841 200 0.20 0.28 0.28 0.40 0.29 0.06

cg0124267 * rs4399565 200 0.52 0.62 0.59 0.72 0.44 0.19

cg1048095 * rs736004 200 0.63 0.18 0.69 0.28 0.66 0.05

cg1877239 * rs1012116 200 0.78 0.45 0.83 0.62 0.74 0.12

Background SNPs 20,000 0.06 0.07 0.05 0.12 0.05 0.04

Null SNP interactions 453,400 0.05 0.05 0.05 0.05 0.05 0.05

Null SNP interactions
(w/MAC > 50)

380,800 0.05 0.05 0.05 0.05 0.04 0.04

Table 3 Results from decision tree analysis on Post

Decision tree (importance) Random forest (importance rank)

Predictor Training Validation Mean (SD) Median

rs736004 1.0000 0.9645 33.86 (27.75) 22

rs9661059 0.9989 1.0000 14.8 (13.29) 10

rs10828412 0.9843 0.9860 34.75 (24.16) 25.5

rs1012116 0.8998 0.8922 20.25 (15.08) 14

rs4399565 0.7838 0.6970 23.27 (15.25) 19

cg18772399 0.6793 0.5597 4.415 (1.72) 4

cg00000363 0.5758 0.4951 4.085 (1.75) 4

cg10480950 0.5348 0.3802 4.59 (1.91) 4

cg00045910 0.4441 0.3508 4.715 (1.74) 5

cg01242676 0.4333 0.2718 4.7 (1.79) 5

Pre – – 1 (0) 1

Age – – 5.075 (1.74) 5

Sex – – 87.625 (10.21) 90

Decision analysis consisted of all 200 replications combined, and then separated into training (n = 54,334), validation (n = 40,769), and test (n = 40,897). Random
forests were performed for each replicate separately, and each variable was ranked for importance. Pre, age, and sex were included as covariates
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The full mixed model (model 1a and Method II) also
showed modest to good power to detect causative SNP–
CpG pairs: 0.95 down to 0.28 for the 5 main sites, and the
power at each site was slightly better than for the full GLM
model. The reduced mixed model (model 1b and Method
II) showed better power at some sites and worse power at
others, in the same directions as Method I. The detection
of the “background” sites was best with the reduced mixed
model, at 0.12, but in the full mixed model, this detection
was no better than the null. In addition to the generating
model, with the mixed model we also tested change be-
tween simulated log (TG) at times 3 and 4 versus times 1
and 2 with effects from methylation level change from time
4 versus time 2 (models 2a and 2b with Method II). We see
a small loss of power for this full model (2a) vs. the full gen-
erating model (1a), with power from 0.86 to 0.29 at the 5
main sites for this model. However, there is a substantial
loss of power in the reduced model (power ranging from
0.19 down to 0.05). This may suggest caution is required in
applying the reduced model in situations where the mech-
anism is not well understood. In such situations, it may be
prudent to apply the full model.
The p values at for the “null” sites on chromosomes 21

and 22 were distributed more or less as expected with
Type I error of 0.04 to 0.05, close to nominal α = 0.05,
under Methods I and II (see Table 2). However, some
caution should be noted here. In an initial run (data not
shown), we inadvertently used the sandwich estimator,
which produced inflated p values with low minor allele
frequency SNPs.
Finally, we used regression tree models (Methods III

and IV) as an alternative to linear models. Table 3 shows
the results of these methods. Individual regression trees
have good performance in scenarios with large sample
sizes and fewer predictors. The regression tree results
represent a tree trained on all 200 replications combined
(n = 136,000). In the combined data, the major known
simulated SNP and CpG markers had the highest im-
portance values. Conversely, random forests show high
performance in scenarios with more weak predictors,
but not necessarily a large sample size. We tested the
relative importance of the major predictors in a random
forest model (Method IV) for each replicate, and in-
cluded background SNPs as superfluous predictor vari-
ables. After covariates, the CpG sites reliably achieved
the highest importance scores, while the SNPs that they
modified had lower importance.

Discussion and conclusions
The heritability estimated reported suggested the simu-
lated phenotypes had a good inheritance pattern, making
it possible to detect causative SNPs and SNP–CpG inter-
actions in our analyses. In examining the frequency of
tests with p value of interactions ≤0.05 in 4 models with

mixed model analysis (models 1a, 1b, 2a, and 2b for
Method II; see Table 2) and 2 models with GLM analysis
(models 1a and 1b for Method I; see Table 2), we see
reasonable power to detect these effects in this sample.
When the exact mechanism is unknown, the results
from models 2a and 2b suggest it may be prudent to use
a full model with both main and interaction terms, but
when the mechanism is well understood, neither the full
model (1a) nor the reduced model (1b) was always ad-
vantageous. Larger samples are required to detect these
effects with these methods after correction for multiple
testing. However, these results suggest that, given a suffi-
cient sample, it is possible to detect gene by methylation
interactions with the methods used here.
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