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Abstract

Statistical power, which is the probability of correctly rejecting a false null hypothesis, is a limitation of genome-
wide association studies (GWAS). Sample size is a major component of statistical power that can be easily affected
by missingness in phenotypic data and restrain the ability to detect associated single-nucleotide polymorphisms
(SNPs) with small effect sizes. Although some phenotypes are hard to collect because of cost and loss to follow-up,
correlated phenotypes that are easily collected can be leveraged for association analysis. In this paper, we evaluate
a phenotype imputation method that incorporates family structure and correlation between multiple phenotypes
using GAW20 simulated data. The distribution of missing values is derived using information contained in the missing
sample’s relatives and additional correlated phenotypes. We show that this imputation method can improve power in
the association analysis compared with excluding observations with missing data, while achieving the correct Type I
error rate.
We also examine factors that may affect the imputation accuracy.

Background
Genome-wide association studies (GWAS) have uncovered
thousands of single-nucleotide polymorphisms (SNPs) as-
sociated with complex traits [1]. The power of GWAS is
limited by the number of individuals with data available for
the trait of interest. For easily phenotyped traits, tens of
thousands of individuals are typically contributing to
GWAS. But the lack of statistical power can still occur
from missingness in phenotypic data. Some phenotypes are
difficult to collect because of cost, loss to follow-up, and
inaccessibility of the biological sample at the time of the
study. However, data collected on related phenotypes or
from the missing sample’s relatives can be exploited.
Current approaches to handle missing data include mul-
tiple imputation [2], intermediate phenotype analysis [3],
and a recently published method, PhenIMP [4].
In this paper, we first describe an extension to the

PhenIMP method, which is designed for performing
GWAS on a phenotype with high missingness. Because
this imputation approach uses both family structure and

additional correlated phenotypes, it has higher power
than methods using phenotypic data alone. We make
several modifications to this method when applying the
approach to the GAW20 simulated data. First, we dir-
ectly estimate the correlation between multiple pheno-
types using the maximum likelihood estimator (MLE)
rather than collecting a pilot data set for independent
estimation. Second, we combine the observed and im-
puted individual level data to assess association between
genotypes and phenotypes instead of using a fixed effect
meta-analysis to combine the analysis performed separ-
ately on the observed and imputed data set. We use the
GAW20 simulated data to evaluate this method and
show that a higher power can be achieved using the im-
puted data set compared with incomplete data and con-
trol the Type I error rate within an acceptable range. We
also examine imputation accuracy by varying the missing
percentage and under different phenotype correlations.
To evaluate power and Type I error rate, we perform
our analysis with knowledge of the “answers.”
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Methods
We first introduce the approach to impute the missing
phenotypes using a multivariate normal (MVN) statis-
tical framework. Then we describe how we use the simu-
lated data set to compare statistical power and Type I
error rate.

Extension to PhenIMP method
We only consider the scenario where 2 phenotypes are
collected, as this is how the pre- and post-treatment tri-
glyceride (TG) level data provided in the GAW20 data
set were simulated. This approach can be easily ex-
tended to studies with more than 2 phenotypes by chan-
ging the dimension of the vectors and matrices.
Let Y be a vector of length 2n, where y1,1 … y1,n are

the values of the first phenotype for individual 1 to n,
and y2,1 … y2,n are the values for the second phenotype.
Missingness can occur in both phenotypes. We assume
that the phenotype vector Y follows a multivariate nor-
mal distribution. The expectation vector of Y is μ ¼ ½μ1

μ2
�;

where μk is the vector with each element as the observed
mean of phenotype k. One can divide the unconditional
covariance of Y into the polygenic variance component
and the environmental variance component as
X
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Let σ2Akk
and σ2Ekk

indicate the polygenic and environ-
mental variance of phenotype k, respectively, and σAk1

and σEk1 indicate the polygenic and environmental co-
variance between phenotypes k and l, respectively. All
these quantities can be estimated using MLE in the
SOLAR [Sequential Oligogenic Linkage Analysis Rou-
tines] software [5]. The matrix ɸ describes the correl-
ation between 2 individuals. The kinship matrix can be
derived using pedigree structure in family studies or em-
pirically estimated using genotypes. The distribution of
Y can be represented compactly using a block matrix
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where, Ym is the vector of the missing values in the
phenotype vector Y (missing data) and Yo is the vector
of all remaining elements (observed data). The parame-
ters μm and are the corresponding vectors of the expect-
ation μ. ∑mm, ∑mo, ∑om and ∑oo are the corresponding
block matrices of ∑.

The conditional distribution of Ym ∣ Yo follows a
multivariate normal distribution, where the mean is
computed as

E YmjYoð Þ ¼ μm þ
X

mo

X−1

oo
Yo−μoð Þ ð4Þ

We use the estimated E(Ym| Yo) as the imputed values
for the missing data in both phenotypes. The second term
in Eq. (4) shows that the imputed values depend on the
family structure of the missing samples, expressed byP

mo

P−1
oo , and also the observed phenotypes of the miss-

ing samples and their family members by Yo − μo. We
then run the association analysis on the combined ob-
served and imputed phenotype values.

Type I error rate evaluation
To select SNPs unassociated with the log-transformed
average difference in TG levels, we only include chromo-
somes 21 and 22 in the analyses as there are no causal
and background polygenic SNPs on these 2 chromo-
somes. The analysis includes 19,763 SNPs. We investi-
gate the Type I error rate using 2 types of outcomes:
average difference and single difference measurement.
The average difference outcome is defined as the differ-
ence between the pre-treatment (average of visits 1 and
2) and post-treatment (average of visits 3 and 4) of the
log-transformed TG levels, whereas the single difference
measurement outcome is defined as the difference be-
tween visit 1 and visit 3 of the log-transformed TG
levels. We run the association analyses on 2 data sets to
compare Type I error rates: incomplete (omitting obser-
vations with missing data) and imputed. We create the
incomplete data set by removing all samples with at least
one missing visit 3 and/or visit 4 TG value. In the im-
puted data set, all missing visit 3 TG values are imputed
using the method described above. Given the very small
missing percentage in visits 1 (4 samples) and 2 (1 sam-
ple) and that there are no samples with visits 1 and 2
missing, we fill in the missing visit 1 or visit 2 values
using the observed visit 2 or visit 1 values, respectively.
A linear mixed-effects model [6] is performed with

log-transformed difference in TG levels (or average dif-
ference) as the dependent variable, SNP as the independ-
ent variable, and a random effect to account for familial
correlation estimated from the pedigree structures. The
analyses are repeated 200 times using the 200 GAW20
simulated data sets.

Power evaluation
We use the 5 major causal SNPs described in the GAW20
Simulation Solutions (rs9661059, rs736004, rs1012116,
rs10828412, and rs4399565) to evaluate power in associ-
ation analyses. The proportion of the trait variance ex-
plained by the 5 SNPs is set to 0.125, 0.10, 0.075, 0.05, and
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0.025, respectively, in the GAW20 simulation models. As
described for the Type I error rate evaluation, a linear
mixed-effects model is performed on the 5 causal SNPs in
each of 200 iterations. Power is evaluated using both
average difference and single difference outcome in the
incomplete and imputed data set. All statistical analyses
are implemented using the R package seqMeta [7].

Imputation accuracy evaluation
We compute the mean square error (MSE) between the
true and the imputed phenotype values to assess imput-
ation accuracy. We first remove 4 samples with missing
visit 1 TG value and 1 sample with missing visit 2 TG
value to make a data set that has no missing values on
visits 1, 2, and 4. To examine imputation accuracy under
different missing percentages, we randomly select 20,
50%, or 80% of visit 2 TG values to be missing. To
evaluate the effect of phenotypes correlation on the im-
putation accuracy, we impute the missing visit 2 TG
values using visit 1 TG values (correlation = 0.9) and visit
4 TG values (correlation = 0.8), respectively. MSE be-
tween the true and the imputed visit 2 TG values is then
computed in all 6 combinations of missing percentage
and correlation. We repeat 200 times using the 200 sim-
ulated data sets.

Results
There are 680 samples with both genotype and pheno-
type data available. When evaluating Type I error rate
and power, the sample size of the incomplete and im-
puted data set is 563 and 680, respectively, and it is 675
when evaluating imputation accuracy.
To examine Type I error rate, we use 19,763 SNPs on

chromosomes 21 and 22 in each iteration and repeat
200 times for a total of 3,952,600 unassociated SNPs.
Type I error rate is computed under 3 different

significance levels: 0.05, 1 × 10− 3 and 1 × 10− 4. A slightly
inflated Type I error rate is seen in the incomplete data
set when using the average difference outcome.
However, the Type I error rate can be controlled within

an acceptable range in the imputed data set for both
average difference and single difference measurement out-
comes; Table 1 lists the Type I error rate results.
To evaluate power, we restrict our attention to the 5

known major causal SNPs. We compute power under 2
different significance levels: 0.01, accounting for the 5
SNPs tested, and 1 × 10− 4, a more stringent threshold.
Analyses using average difference as the outcome outper-
form analyses using single difference measurement for all
5 SNPs (Tables 2 and 3). For example, in imputed data,
rs9661059 has 89% power to detect a true association with
the average difference as the outcome compared with
56.5% power with a single difference measurement at an
alpha of 0.01. We observed higher power in the imputed
data set than in the incomplete data set. For example,
rs736004 has 27 and 39% power to detect the true associ-
ation with average difference as the outcome at an alpha
of 1 × 10− 4 using the incomplete and imputed data, re-
spectively. A similar pattern can be found when detecting
the association using single difference outcome, where
rs736004 has 16 and 32.5% power using the incomplete
and imputed data, respectively.
When assessing imputation accuracy, the MSE is rela-

tively stable among different missing percentages
(Table 4). The average MSEs of 20, 50, and 80% missing
percentages are 0.0653, 0.0661, and 0.0693 when imput-
ing from visit 1 TG values, and it goes from 0.1172 to
0.1235 when imputing from visit 4 TG values.

Discussion and conclusions
We described a phenotype imputation method incorpor-
ating family structure and additional phenotypes, and

Table 1 Simulation result of Type I error rate

Average difference Single difference

Incomplete Imputed Incomplete Imputed

α = 0.05 0.046 0.046 0.046 0.046

α = 1 × 10−3 1.01 × 10− 3 8.79 × 10−4 8.29 × 10−5 8.4 × 10− 4

α = 1 × 10− 4 1.25 × 10− 4 9.22 × 10− 5 8.67 × 10− 5 8.18 × 10− 5

Table 2 Simulation result of power when P < 0.01

Average difference Single difference

Incomplete Imputed Incomplete Imputed

rs9661059 0.745 0.890 0.475 0.565

rs736004 0.885 0.955 0.875 0.960

rs1012116 0.660 0.705 0.480 0.650

rs10828412 0.875 0.965 0.390 0.755

rs4399565 0.105 0.250 0.010 0.035

Table 3 Simulation result of power when P < 1 × 10–4

Average difference Single difference

Incomplete Imputed Incomplete Imputed

rs9661059 0.175 0.260 0.020 0.040

rs736004 0.270 0.390 0.160 0.325

rs1012116 0.120 0.120 0.025 0.070

rs10828412 0.200 0.490 0.010 0.060

rs4399565 0.000 0.045 0.000 0.000

Table 4 Simulation result of imputation accuracy

Missing
percentage

MSE

p = 0.9 p = 0.8

20% 0.0653 0.1172

50% 0.0661 0.1190

80% 0.0693 0.1235
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evaluated the performance of this method using GAW20
simulated data. This method can be applied to unrelated
or family data by simply changing the correlation matrix
ɸ. We show that the imputed missing phenotypes can be
determined under a MVN distribution using family
structure, an observed second phenotype of the missing
samples, and the 2 observed phenotypes of the missing
sample’s family members.
We found that the average difference outcome per-

formed better than the single difference measurement
outcome. The association analysis for the average differ-
ence outcome is more accurate than the single difference
measurement outcome because the averaging process
decreases the variance in average difference outcome.
The imputed data set provided higher power than the
incomplete data set, the latter being the most common
way to handle missing data in GWAS, and there was no
inflated Type I error in the imputed data set. The ad-
equate control of Type I error with the modifications to
the PhenIMP method suggests that the MLE estimation
for the phenotypes correlation and joint analyses of the
observed and imputed individual level data can be per-
formed. Even though the imputation accuracy is rela-
tively stable among different missing percentages, a
higher correlation between phenotypes can improve the
imputation accuracy. Other factors, such as effect size,
need further investigation.
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