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Abstract

Background: DNA methylation, an epigenetic modification, can be affected by environmental factors and thus
regulate gene expression levels that can lead to alterations of certain phenotypes. Network analysis has been used
successfully to discover gene sets that are expressed differently across multiple disease states and suggest possible
pathways of disease progression. We applied this framework to compare DNA methylation levels before and after
lipid-lowering medication and to identify modules that differ topologically between the two time points, revealing
the association between lipid medication and these triglyceride-related methylation sites.

Methods: We performed quality control using beta-mixture quantile normalization on 463,995 cytosine-phosphate-
guanine (CpG) sites and deleted problematic sites, resulting in 423,004 probes. We identified 14,850 probes that were
nominally associated with triglycerides prior to treatment and performed weighted gene correlation network analysis
(WGCNA) to construct pre- and posttreatment methylation networks of these probes. We then applied both WGCNA
module preservation and generalized Hamming distance (GHD) to identify modules with topological differences
between the pre- and posttreatment. For modules with structural changes between 2 time points, we performed
pathway-enrichment analysis to gain further insight into the biological function of the genes from these modules.

Results: Six triglyceride-associated modules were identified using pretreatment methylation probes. The same 3 modules
were not preserved in posttreatment data using both the module-preservation and the GHD methods. Top-
enriched pathways for the 3 differentially methylated modules are sphingolipid signaling pathway, proteoglycans in
cancer, and metabolic pathways (p values < 0.005). One module in particular included an enrichment of lipid-related
pathways among the top results.

Conclusions: The same 3 modules, which were differentially methylated between pre- and posttreatment, were
identified using both WGCNA module-preservation and GHD methods. Pathway analysis revealed that triglyceride-
associated modules contain groups of genes that are involved in lipid signaling and metabolism. These 3 modules may
provide insight into the effect of fenofibrate on changes in triglyceride levels and these methylation sites.
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Background
Epigenetic changes are biochemical modifications in chro-
mosomes that do not alter the DNA sequence [1]. DNA
methylation is one such epigenetic process implicated in
human disease. DNA methylation involves the addition
of a methyl group to DNA, which usually occurs at
cytosine-phosphate-guanine (CpG) dinucleotides in the
promoter region or within genes [1]. It is known to regu-
late gene expression levels by changing the chromatin
structure, thereby preventing transcription factors from
binding to the gene promoter, which can lead to alter-
ations of phenotypes [2]. DNA methylation can be modu-
lated by external factors, such as smoking or exposure to
toxins [3]. As such, epigenetic information is considered
to be fundamental in understanding the interaction be-
tween the human genome and the environment.
Recent research has unveiled the potential involvement

of DNA methylation on the regulation of fasting blood
lipids [4–6]. One way to visualize interactions and changes
in the DNA methylation profile is to construct methylation
networks and compare their topology. Structural changes
resulting from external stimuli can be detected with net-
work comparison algorithms that can identify subnetworks
that are either preserved or structurally different. Several
papers have performed network-based methods to identify
trait-related modules [7–9] and examined the preservation
of such modules, either between different tissues or differ-
ent data sets. For example, Horvath et al. [7] conducted
weighted gene correlation network analysis (WGCNA) to
examine the effect of aging on DNA methylation modules
in humans and reported a robustly defined age-related
comethylation module that is present in multiple human
issues including blood and brain. Rickabaugh et al. [8] also
found a preserved methylation module that was associated
with age and HIV-1 status in 2 different HIV data sets via
WGCNA. However, to our best knowledge, there are no
previous studies using network-based approaches to
identify triglyceride-associated modules and assess
topological differences for each module between 2 time
points. We investigated the topological differences of
triglyceride-associated methylation networks constructed
before and after the administration of fenofibrate.

Methods
Quality control
Data from GAW20 was used and included epigenetic
and pharmacogenomics data for 188 unique families
[10]. A total of 995 individuals with pretreatment DNA
methylation profiles at visit 2 and 530 individuals with
posttreatment DNA methylation profiles at visit 4 (with
446 individuals overlapping during the 3-week treatment
period) were used to construct, separately, a pre- and
posttreatment network. Because of systemic differences in
the range of Infinium I and Infinium II probe methylation

values, we performed beta-mixture quantile normalization
(BMIQ) using the bmiq function from wateRmelon pack-
age in R on a total of 463,995 methylation probes to adjust
the beta values of Type II probes to align with the dis-
tribution of Type I probes [11, 12]. Probes with single
nucleotide polymorphisms (SNPs) under the actual CpG
sites, SNPs at the nucleotide right next to a CpG site, or
cross-reactive probes that have a target sequence similar
to another location in the genome are potentially prob-
lematic, and were excluded from analysis [13]. A total of
423,004 pretreatment CpG sites were used in the analysis.

Network
We were interested in DNA methylation changes caused
by fenofibrate. To build the networks, we limited the
methylation probes to those that are nominally associated
(p < 0.05) with the log-transformed triglyceride level from
visit 2, resulting in 14,850 probes from pretreatment data. If
we limited our study to those probes that are significantly
associated (false discovery rate [FDR] < 0.05), we might lose
many informative probes that only show nominal signifi-
cance without considering their potential interactions with
other probes used in the network constructions.
To isolate the treatment effect from other covariates, we

built the networks from pre- and posttreatment residual
methylation values. We performed linear mixed models
using the lmekin function in the coxme package in R for
each of the 14,850 pretreatment CpG sites, adjusting for
family relatedness, the first 10 principal components ac-
counting for residual batch effects, and the covariates age,
sex, field center, and smoking status [14]. Similarly, we
obtained residuals for posttreatment methylation for
the same set of CpG sites. Samples with more than half
missing residuals and CpG sites with variance smaller
than 1 × 10− 10*max (abs [residuals of all probes among
all samples]) were removed. We applied hierarchical
clustering to samples to detect sample outliers at a
branch cut height of 7 using the hclust function from
the stats package in R. Overall, 47 probes and 3 sam-
ples were excluded in both pre- and posttreatment
methylation data.
We used the residuals to construct pretreatment and

posttreatment networks using WGCNA, which uses pair-
wise correlations between the variables to create a weighted
network [15]. We chose soft thresholding power β accord-
ing to the approximate scale-free topology criterion and
computed the adjacency matrix by raising co-expression
similarities by power β [16]. We chose a power of β = 3 as
it was the lowest power at which the scale-free topology
had a good fit of R2 greater than 0.9.
To minimize the effects of noise and spurious associ-

ations, the adjacency matrix was transformed into the
topological overlap matrix, which reflects the relative
interconnectedness between a pair of methylation probes,
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and the corresponding dissimilarity matrix was calculated
by subtracting the adjacency matrix from 1. We per-
formed hierarchical clustering of the dissimilarity matrix
and a dynamic tree-cut algorithm to identify modules in
the pretreatment network, with a minimum module size
of 30 to avoid small modules and pass more informative
results to the subsequent pathway analysis [17, 18]. Trans-
formation of the adjacency matrix and network construc-
tion were performed using the blockwiseModules function
from WGCNA package in R [15].
We tested whether pretreatment methylation modules

changed after treatment more than we would expect
by chance using the module-preservation method and
the generalized Hamming distance (GHD) method. The
module-preservation statistic is comprised of many factors
that describe the density of the network and network con-
nectivity. These statistics are aggregated and were used to
calculate the z-score, Zsummary, for each preservation meas-
ure [19]. A Zsummary > 10 indicated strong evidence of mod-
ule preservation, whereas a Zsummary between 2 and 10
indicated weak evidence of preservation. If Zsummary

was < 2, we concluded there was no evidence of module
preservation. Module changes were also ranked according
to a rank statistic medianRank, which is also composed of
statistics related to a network’s density and connectivity,
but is less sensitive to module size according to Langfelder
et al. [19]. We used both statistics to determine whether
or not a certain module was preserved between pre- and
posttreatment. Module preservation analyses were con-
ducted using the modulePreservation function from the
WGCNA package in R [15]. GHD is a distance metric that
uses one-step topological overlap as the edge weights to
account for its direct neighboring structure around the
pair of nodes. Formal hypothesis testing can be done by
finding the null distribution using permutation, but it is
computationally inefficient. In a scale-free network, GHD
permutation distribution is approximately normally dis-
tributed, ie, GHDπðAπ;BÞ � Nðμπ; σ2

πÞ [20]. We further
standardized the GHD value so it follows a standard nor-
mal distribution and evaluated its significance against the
normal quantiles.

Pathway analysis
After we compared the pre−/posttreatment module
pairs, we performed pathway-enrichment analysis for
module pairs that had topological change between the
2 time points to determine whether the genes from the
modules are associated with a certain biological function.
Pathway analysis was done using the gometh function in
missMethyl library in R, which conducts hypergeometric
tests to determine if the gene sets from the modules contain
more genes than expected in a particular pathway [21]. We
used IlluminaHumanMethylation450kanno.ilmn12.hg19 to

get annotations and tested 319 pathways in the Kyoto
Encyclopedia of Genes and Genomes [22].

Results
Module assignment
Six subnetworks, whose module sizes are 210, 177, 123,
112, 91, and 44, were identified in the pretreatment net-
work, while 14,049 probes remained outside of these
modules. Each module was assigned a color: pink, blue,
brown, yellow, green, and red that are in descending
order of module size.

Module preservation analysis
In Fig. 1, methylation probes assigned to blue, pink, and
yellow modules clearly grouped together in the post-
treatment network, indicating fairly good preservation
for these 3 modules. As seen in Fig. 2, pink, blue, and
yellow modules also had a Zsummary > 10 and were
ranked at first, second, and third, respectively, when
applying medianRank statistic, revealing their good pres-
ervation in the posttreatment network. Green and brown
modules were tied for fifth place, and their Zsummary stat-
istic values were < 10, so it is likely these 2 modules were
not preserved between pre- and posttreatment. The red
module had a Zsummary of 1.234, which was < 2, and was
ranked fourth in terms of medianRank statistic.

GHD
Unlike WGCNA, the GHD method requires a (0,1)-adja-
cency matrix. We obtained such a matrix by thresholding
the absolute value of the correlation matrix obtained from
WGCNA. We used a threshold of 0.2, which results in a
nearly scale-free network. It is thought that biological net-
works are scale-free, which are characterized by a small
number of highly connected nodes known as hubs that
hold the network together [16]. Under the null hypothesis,
pretreatment and posttreatment modules are independent,
which means that there is topological difference between
the two modules. For each pre–post module pair, we calcu-
lated the GHD statistic, the mean, and the variance, and
computed the corresponding Z score and the p value.
We used Bonferroni-corrected p values to account for

multiple testing, ie, a significance threshold of 0.05/6 =
0.00833. Table 1 shows that the pink, blue, and yellow
module pairs were not independent, which implies that
the pre- and posttreatment modules did not have topo-
logical differences. Conversely, the green, brown, and
red modules show a differential topological structure
between pre- and posttreatment networks. Of note, the
red module has a borderline p value of 0.009, which is
very close to the Bonferroni corrected alpha of 0.00833,
suggesting that it is nearly significant in having no topo-
logical difference between pre- and posttreatment.
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We found that rankings of 6 modules from GHD and
medianRank statistic were similar (ranked first to sixth
for module-preservation level: pink, blue, yellow, red,
brown, and green) by comparing the results from modu-
le-preservation and GHD methods. Although its Zsummary

showed the weakest preservation, the red module had a
borderline p value of showing no topological difference
and was ranked fourth; further investigation may be ne-
cessary to evaluate module preservation of red module.

Visualization
As mentioned previously, the red module required fur-
ther investigation to determine if there is any topological
difference between pre- and posttreatment. We exam-
ined the structural changes for the red module by mak-
ing network plots. We used the same threshold of 0.2 as
in the first step of the GHD method, and converted each
cell of the adjacency matrix from absolute value of the
correlation coefficient into a value of 0 or 1. If the

Fig. 1 Clustering dendrogram of pre- and posttreatment methylation probe network, together with assigned module colors (pink, blue, yellow,
red, brown, and green)
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dichotomous correlation coefficient between 2 probes
was 1, we drew an edge between them.
In the 2 network plots in Fig. 3, there was an apparent

difference of network structure between pre- and post-
treatment of the red module. The strong relationships
between most of the methylation probes in the red mod-
ule disappeared in the posttreatment network. The net-
work plots of the red module were similar to those of
the green and brown modules, indicating that the red
module was also differentially methylated between pre-
and posttreatment. Further investigation into the probes
is needed to determine if the changes were the result of
a drug effect. One such potential investigation would be
to perform a pathway-enrichment analysis with these mod-
ules to determine if methylation probes can be linked to
genes related to lipid signaling.

Pathway analysis
For the 3 differentially methylated modules (green, brown,
red), we performed pathway-enrichment analysis to test for
overrepresentation. Table 2 shows the results of the path-
way analysis for the red, green, and brown modules. Com-
pared to the brown and green modules, the red module is

made up of more genes that are involved in lipid signaling
and metabolism, which points to overrepresentation in the
gene list in the red module. For example, LPCA1 and
AGPAT3 are known to be involved in encoding enzymes
that play a role in phospholipid metabolism [23]. This
implies that fenofibrate had a bigger effect on triglyceride
levels through methylation probes in the red module, lead-
ing to a striking structural change between the 2 time
points as is shown in Fig. 3.

Discussion
By performing network analyses on triglyceride-associated
DNA methylation, we found 2 modules (green and brown)
that are differentially methylated between pre- and post-
treatment based on the results of both 2 statistics (Zsummary

and medianRank) in the WGCNA module-preservation
method and the GHD method. As the red module has a
borderline p value of showing no topological difference and
was ranked fourth, we created network plots for pre- and
posttreatment, separately, and observed that it appeared
to be differentially methylated. Therefore, 3 modules
(red, green, and brown) were found to have topological
difference between pre- and posttreatment.
Comparison between module-preservation and GHD

methods should also be considered. Rankings of 6 mod-
ules from GHD and medianRank statistic were similar
(ranked first to sixth for module preservation level: pink,
blue, yellow, red, brown, and green). However, the Zsummary

statistic showed slightly different results, especially for the
red module, meaning the red module has the weakest pres-
ervation in terms of Zsummary, but it was at the middle level
when applying the GHD and medianRank statistic. This
difference between results of Zsummary and medianRank
statistic may be a result of Zsummary’s sensitivity to module
size. Because the red module has a relatively small module
size of 44, its lack of preservation based on low Zsummary

Fig. 2 The medianRank and Zsummary statistics of module preservation of pretreatment modules in posttreatment modules (y-axis) versus module
size (x-axis)

Table 1 Results of independence test of each module pair
between pre- and posttreatment networks

Modules GHD Z score p Value

Pink 0.025 − 11.774 5.307 × 10−32

Blue 0.092 −9.384 6.350 × 10−21

Yellow 0.059 −8.106 5.225 × 10−16

Red 0.016 2.609 0.009

Brown 0.041 0.953 0.340

Green 0.006 0.462 0.643

Null: pre- and posttreatment modules are dependent (there are structural
changes); alternative: pre- and posttreatment modules are independent (no
structural changes)
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value may not be as credible as other large modules [19].
Thus, further investigation using network visualization was
necessary to evaluate the preservation level of red module.
Some limitations of WGCNA and 2 network compari-

son methods surfaced during the analysis. Edge direction
was not considered in any of the statistics, possibly result-
ing in loss of information regarding relationships between

methylation probes. It would be more telling if we could
use a two-step or even more general topological overlap
rather than one-step topological overlap to include more
information about the neighboring structure around a pair
of methylation probes to define the GHD statistic, al-
though it may not be straightforward to prove normality
of the sampling distribution under the null.

Fig. 3 Pretreatment and posttreatment network plots of red module
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Conclusions
We explored the relationship between triglyceride-associated
DNA methylation and fenofibrate using WGCNA to con-
struct pre- and posttreatment co-methylation networks and
detect topological differences between the 2 networks. Using
both module-preservation and GHD methods, we found 3
modules that were differentially methylated in posttreatment.
Enrichment analysis of these 3 modules revealed that some
of these modules are made up of genes that are in-
volved in phospholipid metabolism, which may provide
insight into the effect of fenofibrate on changes in methy-
lation and triglyceride levels. Although we cannot con-
clude that fenofibrate induced the epigenetic alterations,
our network-based approach seems promising for detect-
ing treatment-induced changes in comethylation.
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