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Abstract

Epigenome-wide association studies (EWAS) have traditionally focused on the association test of single epigenetic
markers with complex traits. However, it is possible that multiple cytosine-phosphate-guanine (CpG) sites at the
same locus could jointly exert their effects on human traits. Therefore, a region-based test that combines multiple
markers could be more powerful. We used 2 different region-based tests to investigate the association between
changes in DNA methylation and drug response, including the median methylation level test (MMLT) and sequence
kernel association test (SKAT). No genes were found to be significantly associated with the drug response (for
triglycerides, the false discovery rate ranged from 0.855 to 0.999; for high-density lipoprotein cholesterol, and the
false discovery rate ranged from 0.584 to 0.915). Further evidence is needed to explore potential application of
gene-level methylation association analysis.

Background
Considerable interindividual variabilities of responses have
been observed in people who take lipid-lowering drugs,
underscoring the importance of genetic variants to the
drug response. For instance, common genetic polymor-
phisms in the apolipoprotein B (APOB) gene are associ-
ated with the capability of transferring triglyceride and
cholesteryl esters during lipoprotein metabolism [1].
Moreover, DNA methylation could be altered by
lipid-lowering drugs, which can interrupt methionine bio-
synthesis through multiple pathways [2]. It was found that
the methylation level on CPT1A was significantly associ-
ated with triglyceride and high-density lipoprotein choles-
terol (HDL-C) in European populations [3].

Das et al. performed an epigenome-wide association
study (EWAS) to test the association of each individual
cytosine-phosphate-guanine (CpG) site with lipid levels
before and after 3 weeks of fenofibrate treatment [2]. No
significant association was found. It is possible that mul-
tiple CpG sites on the same locus, each one with small ef-
fect, could jointly exert their effects, which could not be
identified by the single-CpG site analysis [4]. It is thus in-
teresting to explore region-based tests, which could use
the information from multiple CpG sites and examine
their joint effects on drug response. Such analysis can be a
complement to current single-CpG association studies.
The objective of this study is to investigate whether
region-based changes of methylation profiles are associ-
ated with lipid changes induced by fenofibrate treatment
in a family-based population.* Correspondence: hhlin@bu.edu
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Methods
Data processing
The family data from the Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN) study was obtained via
GAW20. A detailed description of the GOLDN study design
can be found elsewhere [3]. Briefly, the study is a
family-based, open-label, and one arm clinical trial assessing
the lipid-lowering-drug effect on human genomics after a
treatment of fenofibrate (160 mg) for 3 weeks. Participants
included in current analyses met these3 criteria: (a) having
qualified methylation data both before and after the 3 weeks
of treatment; (b) having 1 or 2 lipid measurements at both
pre- and posttreatment times; (c) having all the covariate
data (such as age, sex, field center, and smoking status) at
entry of the trial. There were 446 participants of European
ancestry from 139 families that met these criteria.
DNA methylation was quantified by the Illumina Infi-

nium HumanMethylation450K BeadChip using CD4+ T
cells both pre- and posttreatment. The methylation level of
each CpG site was estimated as a continuous variable ran-
ging from 0 (not methylated) to 1 (fully methylated). Qual-
ity control of the methylation data was conducted by
samples and probes separately. A multidimensional scaling
plot was used to identify outliers among samples; no sam-
ples were excluded. For quality control of probes, the fol-
lowing filters were applied: exclusion of probes with
single-nucleotide polymorphisms (SNPs) with minor allele
frequency > 0.01 under the actual CpG sites or at the single
base extension (17,297 probes), or cross-reacted to multiple
targets (29,233 probes) [5]. After quality control, 446 sam-
ples with 423,180 probes remained. Beta-mixture quantile
normalization was conducted to control biases from 2 dif-
ferent types of probes of the 450 K methylation array [6]. In
addition, the first 20 principal components were calculated
separately in pre- and posttreatment methylation data to
control for potential confounders.
Lipid profiles were measured from blood after an over-

night fast both before and after 3 weeks of intervention. De-
tails about lipid measurement have been described in the
previous GOLDN publication [2]. Gender, field center (Min-
nesota or Utah), and metabolic syndrome (yes or no) were
binary variables. Metabolic syndrome was defined according
to National Cholesterol Education Program (NCEP) guide-
lines from American Heart Association (AHA)/National
Heart, Lung, and Blood Institute (NHLBI) 2004 meeting.
Smoking status was categorized by never, past, and current
smokers. Age and lipid were continuous variables in our
analysis.

Median methylation level test of genes
To better capture the effect of gene-level methylation, we
defined a gene region by including all the CpG sites be-
tween 100 kb of the first transcript start site (TSS), and
100 kb downstream of the last TSS of the gene [7]. The

median methylation level of all the CpG sites within a re-
gion was calculated as a representation of the overall
methylation pattern of the gene [7]. A total of 21,231
unique gene regions were identified, which encompassed
more than 300,000 CpG sites. The TSSs were retrieved from
GENCODE release 19, which was downloaded from the
UCSC Genome Browser. Among the 21,231 unique genes,
894 were not among the UCSC known genes, and an add-
itional 4602 genes did not contain any qualified CpG sites.
Thus only median methylation levels for 15,735 genes were
calculated for each sample. Both the pre- and posttreatment
methylation matrices were composed of 446 samples.
The change of median gene region methylation was calcu-

lated as pretreatment median methylation minus posttreat-
ment median methylation. A linear mixed-effect regression
model was used to investigate the association between
change in methylation median and natural logarithm trans-
formed change of either triglyceride or HDL-Cafter 3 weeks
of fenofibrate intervention. The outcome variable was nat-
ural log-transformed lipid change, while the change in me-
dian methylation was treated as an independent variable.
Age, gender, field center, metabolic syndrome, smoking sta-
tus, and pre– or post–principal components that were sig-
nificantly associated with changes of lipid were treated as
fixed effects, and the family structure was treated as a ran-
dom effect. The analysis was conducted using the lmekin
function in the R comex package, and the significance
threshold was defined as Benjamin-Hochberg false discovery
rate q value equal to 0.05 [8].

Table 1 Characteristics of 446 participants included in this
analysis

Characteristics N (%) or mean ± SD

Number of participants 446

Age (years) 47 ± 16

Women 230 (51.6)

Field centers

Minnesota 201 (45.1)

Utah 245 (54.9)

Metabolic syndromea 179 (40.1)

Smoking status

Never smoker 316 (70.9)

Past smoker 100 (22.4)

Current smoker 30 (6.7)

Changes of triglycerides
(mg/dL)

48.9 ± 54.6

Changes of high-density
lipoprotein cholesterol
(mg/dL)

−2.9 ± 5.1

aMetabolic syndrome was defined according to NCEP guidelines from AHA/
NHLBI 2004 meeting
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Sequence kernel association test of genes
The sequence kernel association test (SKAT) method is
one of the variance-component approaches that tests for
associations by evaluating the distribution of genetic effects
for a group of variants. It can be used to assess the associ-
ation of a continuous or binary trait with a set of CpG sites
in a similar fashion to a gene-level analysis in genome-wide
genotyping or sequencing data [9]. For example, given a
continuous trait such as the natural log-transformed
change in triglyceride or HDL-C, the change of methylation
level at single CpG sites would have a score statistic that
was calculated by the marginal linear mixed-effect model
adjusting for covariates and family structure. Multiple CpG
sites could then be combined as a single CpG set. Consider-
ing such a set, SKAT for methylation sites uses a joint stat-
istic that is an unweighted (all weights were equal to 1)
sum of squares of the single CpG sites score statistics for
the set. The joint statistic asymptotically follows a

mixture chi-square distribution and its p value can
be computed analytically quickly. Here we used the
same 15,735 gene regions as above to identify differ-
entially methylated genes. The analysis was con-
ducted using R package seqMeta and the significance
level was defined as the same as in the median
methylation analysis [10].
Sensitivity analysis was performed to address whether re-

sults would change when we applied more weights to the
CpG sites that changed as a consequence of drug response.
For example, the changes of methylation were treated as a
continuous variable ranging from − 1 to 1 (where the closer
to 0, the less likely the methylation changed). We also com-
puted the “methylation changing dosage,” which was de-
fined as methylation changes plus 1, which ranged from 0
to 2. Thus a CpG site with most dosage around 1 meant
that the methylation level remained the same (and methyla-
tion dosage frequency would close to 0.5), whereas a CpG

Table 2 Top 10 genes associated with natural logarithm change in triglycerides

MMLT SKATa

Genes N Effect size SE p Value FDR q value Genes N Q-statistic p Value FDR q value

CSHL1 3 1.29 0.35 2.02E-04 0.999 RPL29 1 117.39 1.59E-03 0.855

C22orf39 4 −1.89 0.56 7.74E-04 0.999 GJB5 2 104.51 2.95E-03 0.855

C14orf166 4 2.63 0.81 1.19E-03 0.999 TBX20 2 104.51 2.95E-03 0.855

RPL29 1 0.91 0.29 1.41E-03 0.999 WDR92 7 436.86 3.75E-03 0.855

PRPH 42 0.95 0.30 1.57E-03 0.999 CPT1A 6 439.50 3.92E-03 0.855

GSG1 2 −1.28 0.41 2.07E-03 0.999 MIR1266 2 51.56 5.29E-03 0.855

LPIN2 41 −0.95 0.32 2.55E-03 0.999 TIMP4 5 191.94 7.11E-03 0.855

IP6K3 124 −1.26 0.42 2.61E-03 0.999 ZNF788 5 191.94 7.11E-03 0.855

PPIC 53 −0.90 0.31 3.63E-03 0.999 GSG1 2 105.07 8.14E-03 0.855

RHBDL3 21 0.49 0.17 3.94E-03 0.999 CRYGA 3 115.23 1.06E-02 0.855

FDR, false discovery rate; N, number of CpG sites in the gene set
aThe weight of SKAT all equaled 1

Table 3 Top 10 genes associated with natural logarithm change in HDL-C

MMLT SKATa

Genes N Effect size SE p Value FDR q value Genes N Q-statistic p Value FDR q value

ZKSCAN8 4 0.62 0.16 7.42E-05 0.584 KRT222 6 1271.43 5.97E-03 0.915

ZSCAN16 4 0.62 0.16 7.42E-05 0.584 FAM211A 5 840.88 1.00E-02 0.915

MAGI2 67 0.27 0.08 8.12E-04 0.999 ZKSCAN8 4 1095.82 1.13E-02 0.915

CAPN3 30 0.29 0.09 8.72E-04 0.999 ZSCAN16 4 1095.82 1.13E-02 0.915

AK5 37 0.27 0.08 8.78E-04 0.999 HEATR5B 1 552.38 1.28E-02 0.915

KCTD14 37 0.27 0.08 8.78E-04 0.999 IFT27 1 552.38 1.28E-02 0.915

PTP4A2 91 0.29 0.09 1.44E-03 0.999 ZNF567 1 552.38 1.28E-02 0.915

GSTTP1 28 −0.45 0.14 1.45E-03 0.999 ZNF337 4 983.95 1.28E-02 0.915

FOXI1 27 0.31 0.10 1.64E-03 0.999 CD300E 3 1014.54 1.40E-02 0.915

VPS37A 4 0.88 0.28 1.76E-03 0.999 SORCS1 9 1010.61 1.60E-02 0.915

FDR, false discovery rate; N, number of CpG sites in the gene set
aThe weight of SKAT all equaled 1
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with most dosages at 0 (or 2) (the methylation dosage fre-
quency would be small, or even rare) meant that the
methylation level actually changed between pre- and post-
treatment. So, the default setting in seqMeta (which gave
the rare alleles more weights) will add more weight to CpG
sites with significant change of methylation levels, and less
weight to CpG sites with little or change of methylation
levels.

Results
Table 1 summarizes the characteristics of the 446 partici-
pants (mean age: 47.3 years). The number of women was
slightly larger than the number of men. The triglyceride

level tended to decrease while HDL-C increased after
3 weeks of fenofibrate intervention.
Tables 2 and 3 show the top 10 genes associated with the

natural logarithm changes of triglyceride and HDL-C, re-
spectively. We did not find any genes significantly associ-
ated with triglyceride or HDL-C after correction for
multiple testing. Interestingly, CPT1A was among one of
the top triglyceride genes by SKAT, although it did not
reach the predefined genome-wide significance.
Quantile-quantile plots were generated to identify

whether the Type I error was inflated or deflated by median
methylation level test (MMLT) and SKAT (Fig. 1). The plot
of SKAT in natural logarithm changes in triglyceride show
some inflation with a genomic control factor of 1.234, while

Fig. 1 Quantile–quantile plots of association tests by MMLT and SKAT for natural logarithm changes of triglyceride or HDL-C. Shown in panel a is
the quantile-quantile plot for triglycride, in panel b is the plot for HDL-C
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others were deflated. Further plotted by the numbers of
CpG sites in the gene region (which was categorized by the
quartiles of CpG sites) showed that for SKAT in natural
logarithm changes in triglyceride, the plot seemed to be
more inflated in the gene regions with more CpG sites
(Fig. 2).
Sensitivity analysis showed that no genes were signifi-

cantly associated with natural logarithm changes of tri-
glycerides or HDL-C (see Additional file 1: Table S1 and
Table S2), but with relatively lower Type I error than the
unweighted SKAT method (see Additional file 1: Figures
S1 and S2).

Discussion
In the present study, we used 2 region-based association
tests to examine epigenetic modifications associated with
changes in lipid levels induced by fenofibrate in a
family-based population. No genes were significantly asso-
ciated with the change in triglyceride or HDL-C after
3 weeks of intervention, similar to the single CpG test.

Two region-based methods were evaluated in our study.
The Type I error seemed deflated in testing by MMLT
across lipids changes. When the number of CpG sites in-
creased, the Type I error slightly increased but still
remained deflated. Our results suggest that MMLT needs a
relatively large number of changing CpG sites to capture
the overall methylation profile of gene. The method has less
power if only a small number of CpG sites changed as it
only calculated the median level. In contrast, the Type I
error inflated along with the number of CpG sites in the
gene when tested by SKAT, suggesting that noises might be
introduced by including too many irrelevant CpG sites.
Moreover, the Type I error decreased after assigning more
weight to the changed CpG sites, which also indicated un-
changed CpG sites might create “noise” and dilute the ef-
fect of changed CpG sites.
Although neither method identified gene-level significant

methylation profiles associated with lipid changes, SKAT
identified CPT1Aas a potentially interesting gene associated
with the changes of triglyceride. CPT1A is a gene responded
to a key enzyme in the carnitine-dependent transport across

Fig. 2 Quantile–quantile plots by numbers of CpG sites in MMLT and SKAT for natural logarithm changes of triglyceride or HDL-C. Shown in
panel a is the quantile-quantile plot for triglyceride by MMLT, in panel b is for triglycerides by SKAT, in panel c is for HDL-C by MMLT, and in
panel d is for HDL-C by SKAT
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the mitochondrial inner membrane and its deficiency results
in a decreased rate of fatty acid beta-oxidation. The MMLT
method has lower power compared to SKAT when the di-
rections of effects are different [11]. For example, a gene
could contain some CpG sites that were positively associated
with the drug response, and some CpG sites that were nega-
tively associated with the drug response. The overall signal
could be attenuated because the 2 groups of CpG
sites have opposite effects. In contrast, SKAT is par-
ticularly powerful for identifying significant gene sets
in such a case, because it takes into account of the
direction of effects in the model [12].
We acknowledge several limitations of our study. Given

the limited access to the GOLDN study, we might have
missed some important factors related to batch effects or
potential confounders. In addition, 3 weeks of interven-
tion might not be long enough to observe significant
change in DNA methylation. Additional observations are
needed to observe methylation trajectory [13].

Conclusions
We found limited evidence for region-based analysis in
identifying methylation genes associated with drug re-
sponse. Longer and multipoint observations could provide
additional insights into the effects of pharmaceutical
interventions.
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Additional file 1: Table S1. Top 10 genes associated with change in
triglycerides. Table S2. Top 10 genes associated with change in HDLc.
Figure S1. Quantile-quantile plots of association tests by MMLT and
weighted SKAT for natural logarithm changes of triglyceride or HDLc. The
weight of SKAT was the algorithm of minor allele frequency. Figure S2.
Quantile-quantile plots by numbers of CpGs in MMLT and weighted SKAT
for for natural logarithm changes of triglyceride or HDLc. (PDF 600 kb)
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