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Abstract

A central goal in the biomedical and biological sciences is to link variation in quantitative traits to locations along
the genome (single nucleotide polymorphisms). Sequencing technology has rapidly advanced in recent decades,
along with the statistical methodology to analyze genetic data. Two classes of association mapping methods exist:
those that account for the evolutionary relatedness among individuals, and those that ignore the evolutionary
relationships among individuals. While the former methods more fully use implicit information in the data, the
latter methods are more flexible in the types of data they can handle. This study presents a comparison of the
2 types of association mapping methods when they are applied to simulated data.
Background
Linking variation in quantitative traits to locations along
the genome (single nucleotide polymorphisms [SNPs]) is
a central goal in the biomedical and biological sciences.
The rapid growth of sequencing technology in recent
decades has given researchers the ability to sequence
genomes in a time-efficient and cost-efficient way. De-
velopment of statistical methods appropriate to search
for associations among SNPs and quantitative traits (or
phenotypes) has been quite active, often with complex
data sets [1]. These complex scenarios include, but are
not limited to, the case that the trait is simultaneously
influenced by external covariates, multiple genes, or by
gene–gene interactions. This complexity is exacerbated
by the fact that many of the influences of SNPs on
quantitative traits have only been through small effect
sizes. Understanding these associations could prove
useful in the disease diagnosis and/or treatment of
human diseases, as well as in answering questions in
evolutionary biology.
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The search for SNPs associated with variation in a quan-
titative trait under study is often referred to as quantitative
trait mapping (QTM). There are 2 specific goals of QTM:
detection of SNPs associated with variation in quantitative
trait(s) and localization of SNPs associated with variation
in quantitative trait(s). In detection, the goal is to deter-
mine if any SNP in the region of the truly associated
SNP is statistically significant. However, when analyzing
hundreds of thousands of SNPs, the chance of detecting
the exact causal locus is very small. As such, preferred
methods will detect SNPs that are nearer to the causal
SNP. This goal is referred to as localization.
Some association mapping methods (such as the clas-

sical t-test and those in McClurg et al. [2]) analyze gen-
omic data efficiently and can detect strong associations
among SNPs and a quantitative trait under study. In these
methods, samples are grouped according to allele type at a
single site or set of sites, and tests are performed to look
for differences in trait value among such sites. However,
these methods may miss weaker signals because they
fail to use all available information, such as uneven evolu-
tionary relatedness present in population-based samples
of individuals.
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Uneven relatedness among randomly sampled individ-
uals can be attributed to the evolutionary history that exists
within each SNP. Each SNP has an evolutionary history
that can be represented by a bifurcating tree called a phylo-
genetic tree. For example, in the phylogenetic tree in Fig. 1,
each tip represents a copy of the SNP shown. Time moves
from past to present from left to right across the tree, and
longer branch lengths represent longer times. For any 2
observations, the amount of shared evolutionary time is
represented by the shared branches along the tree. Wher-
ever 2 observations share a lineage (collection of branches),
they share an evolutionary history. After a split in their
lineages, the 2 observations evolve independently.
Consider the evolutionary history of a SNP associated

with a trait. If 2 observations share a large portion of their
evolutionary history (as is the case of the 2 blue diamonds
in Fig. 1), their respective trait values are expected have
a large correlation, whereas if 2 observations share little
evolutionary history (as is the case of the 2 black circles
in Fig. 1), their trait values are also expected to show
little correlation. Thus, the evolutionary history of a SNP
associated with a quantitative trait imposes a correlation
structure on the trait values. Tree-based methods that use
this correlation structure during analysis may have im-
proved ability to detect weaker associations compared to
methods that assume independence among observations.
Tree-based methods, such as those in Besenbacher et al.

[3], Pan et al. [4], Thompson and Kubatko [5], Zhang et al.
[6], and Zöllner and Pritchard [7], usually use the evolu-
tionary history within each SNP, in the form of a phylo-
genetic tree, to gain information about the relationships
among observations of the trait during analysis of genomic
Fig. 1 Example of the evolutionary history within a particular SNP represen
(left) to present (right) across the tree. The tips of the tree represent observ
tree is associated with a trait. Then, a large covariance is expected among
large portion of their evolutionary history (shown by the branches in blue).
portion of their evolutionary history, so that little covariance in the corresp
data. However, existing tree-based methods are also
unable to consider complex, but biologically realistic
data, such as external covariate data. In addition, by
using more implicit information present in the data,
tree-based methods also incur a computational cost. By
using this implicit information, they may show improved
performance compared to methods that are not tree based.
In this study, both a non–tree-based method and a

tree-based method are used to directly compare per-
formance of the 2 classes of methods. The analyzed
data contains simulated phenotypes on 1943 unrelated
individuals [8]. Five genes (TNN, LEPR, GSN, TCIRG1,
and FLT3) were analyzed.

Methods
The data analyzed was provided by the Genetics Analysis
Workshop 19 [8]. Beagle was used to impute missing
SNP data and to phase the genotypic data into haplo-
types [9]. We analyzed SNPs in 5 genes and included
100,000 base pairs upstream or downstream from each
gene (TNN, LEPR, GSN, TCIRG1, and FLT3). Locations
of genes were determined using GeneCards Version 3 [10]
and data was extracted using VCFtools Version 0.1.12b
[11]. SNPs lacking 2 or more variants across samples were
not analyzed.
The classical 2-sample t-test and the likelihood score

statistic (LSS) approach [5] were studied to compare the
performance of a non–tree-based method and a tree-
based method. For the classical t-test, at each SNP, the
chromosomal observations were partitioned according
to SNP state (minor or major allele), and a pooled t-test
was performed using these 2 groups. It should be noted
ted by a phylogeny. In the phylogenetic tree, time moves from past
ations from the present time. Suppose the SNP represented by this
trait values from 2 observations (e.g., the blue diamonds) sharing a
In contrast, the 2 observations denoted by black circles share a smaller
onding trait values is expected
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that the number of observations is twice the number of
individuals in the study.
For the LSS approach [5], at each SNP, a phylogenetic

tree, denoted Θ, was estimated from the SNP data. Ini-
tial tree topology (tree shape) estimation was performed
using the method from Mailund et al. [12], in which
neighboring SNPs are used to estimate a phylogenetic
tree at each SNP. To reduce computational expense, a
broad-scale estimate of this tree is used. Specifically, the
tree is considered to be a set of k clusters defined by the
(k − 1) earliest splits in the tree. Each cluster of observa-
tions has a mean trait value (μi). The covariance among
2 observations is proportional to the length of their
shared lineages in the tree. The method assumes the
trait values follow a multivariate normal distribution
with a mean structure (μ = [μ1,μ2,…,μk]), and covariance
structure, V(Θ), defined by the estimated clustered tree.
A constant variance, σ2, is assumed for all trait values.
The LSS is based on the Bayesian information criterion
and is defined to be the maximum penalized likelihood
of the parameters given the data and the estimated tree.
The likelihood is penalized by the number of parameters
used in the calculation of the likelihood and the maximum
is taken over the number of clusters (k = 2,3,…,kmax). At
the ith SNP, the score is defined to be:

LSSi ¼ max
k

2 lnL μ̂; σ̂ 2jy;V Θð Þ;Θ� �
−k lnn

� �
:

Here, μ̂ and σ̂ 2 are the maximum likelihood estimates
of μ and σ2, respectively. The LSS treats each allele as an
observation, so that the number of observations, n, is
twice the number of individuals under study.
We have 2 goals to address—detection of the gene

and localization of the causal loci—and we compare the
performance of a tree-based method (the LSS) to a
non–tree-based method (the classical t-test using chro-
mosomes as observations as in Sasieni [13]) in terms of
each goal. To address detection, permutation testing
was performed. We created 100 permutation data sets
by shuffling the trait values across genotypes, creating ran-
dom trait–genotype pairs. The detection p-value was taken
to be the proportion of permuted data sets producing test
Table 1 Comparing power and type I error across methods using si

Gene TNN
(97 SNPs)

LEPR
(79 SN

Type I error LSS 0.010 0.045

t-Statistic 0.075 0.100

Power LSS 1.000 0.855

t-Statistic 1.000 0.995

This table shows the power of detection for each of the 5 considered genes when
of LSS appeared to be well controlled below 0.05 (row 1), whereas the t-statistic sh
performed well when analyzing TNN and LEPR (rows 3 and 4). Both methods showe
Neither method showed uniquely better performance across the 5 genes studied
statistic values more extreme than the test statistic calcu-
lated using the observed data. To address localization, the
average LSS and t-statistic values are shown at each SNP
for comparison to the absolute true effect size at each SNP
analyzed. The performance of the phylogenetic method
(LSS) and the pooled 2-sample t-test were compared in the
case of each goal.

Results
Both the pooled t-test and the LSS (with a maximum of
k = 15 clusters) were used to analyze systolic blood pres-
sure using 5 genes from the 200 simulated phenotype
data sets. All loci in all replicates chose far fewer than
k = 15 clusters. We note that the alleles t-test does not
account for phenotypic correlation between repeated mea-
sures across chromosomes. Four of these genes (TNN,
LEPR, FLT3, and GSN) ranked in the top 9 genes in terms
of total percentage variation in simulated systolic blood
pressure (SBP). TNN and LEPR had effect sizes as large in
magnitude as 10.89 and 11.99, respectively. We also ana-
lyzed genes accounting for a smaller percentage of the
total variation in SBP, including FLT3, TCIRG1, and GSN,
which had effect sizes as large in magnitude as 3.89, 3.38,
and 0.76, respectively. Detection and localization perform-
ance was compared across the non–tree-based t-test and
the tree-based LSS approach.
In terms of detection, both methods performed well in

finding the signal present in TNN and LEPR (see rows 3
and 4 of Table 1). In the remaining 3 genes that had
weaker signals (FLT3, TCIRG1, and GSN), much lower
power was achieved by both methods, and neither method
uniquely outperformed the other. In addition, 200 simu-
lated Q1 trait data sets (data sets including a trait simulated
without any direct genotype–phenotype association) were
also analyzed to assess the type I error of each method.
The LSS showed error rates lower than 0.05, whereas
the t-test showed error rates above 0.05 in the case of
all 5 genes (see rows 1 and 2 of Table 1). Although both
methods showed similar power of detection, the t-test
showed a type I error slightly larger than expected, whereas
the LSS appeared somewhat conservative across the
considered genes.
mulated data

Ps)
FLT3
(87 SNPs)

TCIRG1
(139 SNPs)

GSN
(131 SNPs)

0.020 0.015 0.020

0.085 0.100 0.100

0.025 0.030 0.100

0.140 0.110 0.035

considering 200 simulated Q1 (null) and 200 SBP phenotypes. The type I error
ows slightly inflated type I error rates (row 2). Both LSS and the t-test
d smaller power in the analysis of FLT3, TCIRG1, and GSN (rows 3 and 4).
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Figure 2 shows the average statistic value at each SNP
within each considered gene. Because the LSS should be
larger in the case of an associated SNP, we consider the
average LSS over the 200 replicate data sets at each SNP
(shown in lower plots in Fig. 2). Similarly, for the t-test,
we consider the average of the absolute value of the
t-statistic over the 200 replicate data sets at each SNP
(see upper plots in Fig. 2). The red dots in each plot
show the true absolute value of the effect size at each
locus (axis on right). As neither method shows a strong
advantage in having higher values nearer to the truly
causal variants, both the t-test and LSS appear to show
similar ability to localize the true causal loci. However,
LSS shows more similar values for nearby SNPs, while
Fig. 2 Example plot of each test statistic across the genes analyzed. Each u
against the location of each SNP along the chromosome. Each lower plot s
each SNP. Each red dot shows the true absolute value of the effect size at t
localizing the true absolute effects
the t-test varies widely across each gene. This is expected
because the t-test considers each SNP marginally, whereas
LSS uses the estimated phylogenetic tree at each SNP,
and, biologically, trees from neighboring SNPs along a
chromosome are expected to be more similar than trees
from SNPs farther apart. With respect to magnitude of
effect size, the LSS showed higher power in detecting
SNPs associated with simulated SBP than the 2-sample
t-test in GSN, where the magnitudes of effect sizes within
the gene were much smaller than in other cases. In the
other cases with larger effects, the t-test outperformed the
phylogenetic method. This may point to the reason that
the methods had mixed performance when analyzing the
considered genes.
pper plot in panels a to e shows the absolute value of the t-statistic
hows the average LSS value plotted against the base pair location of
hat respective locus. Both the t-test and LSS show similar precision in
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Discussion
In this study, genomic data were analyzed using both a
classical non–tree-based approach (the 2-sample t-test)
and a more recently proposed tree-based approach (the
LSS). The results highlight the differences between the
considered methods with respect to both the detection
and the localization analyses. In the detection analysis,
the methods showed similar power, but differed slightly
in type I error rates. However, allelic tests can be biased
[13], and this could be the root of the inflation in the
type I error rate of the t-test. In a separate simulation
study, we used an empirically derived critical value from
the Q1 (null) trait data to make decisions about detec-
tion. In this case, the powers of detection were similar
(within 2.5 %) of the results shown in Table 1 (data not
shown). When considering localization, the LSS and the
t-test had similar trends in estimating the location of the
truly causal loci. In the case of a smaller effect size (GSN),
the LSS outperformed the t-test, which may point to an
advantage of using additional implicit information in
genomic data sets to search for weaker genetic signals
rather than excluding this information.
The study performed here was advantageous in that

the simulated phenotypes were far more complex [8]
than most previous simulated genetic data sets (e.g., see
Besenbacher et al. [3], Pan et al. [4], Zhang et al. [6], and
Zöllner and Pritchard [7]). However, the analyses were
simplified in that they considered only the SNP data and
phenotype of interest but ignored information about
external variables (such as sex) present in the data.
Although some existing non–tree-based methods are
flexible enough to handle more complex biological scenar-
ios such as the additional influence of external covariates
on the trait under study, these methods fail to use all the
information present in the data by ignoring the uneven
evolutionary relatedness among the sampled individuals.
Tree-based methods gain information about the covari-
ance structure of the trait observations by considering the
phylogenetic tree within each SNP, but incur a computa-
tional cost by doing so. In addition, existing tree-based
methods are limited by an inelasticity to handle complex,
but biologically realistic, data, such as data including
external covariate information. As such, discussion and
analyses here included SNP and phenotypic data to show
an even comparison of the 2 classes of methods. However,
as the phylogenetic method showed some promise in its
ability to detect weaker genetic signals, developing tree-
based techniques that are flexible enough to handle more
complex data types could improve the success of associ-
ation mapping using genomic data.

Conclusions
Even though the rapid advancement of sequencing tech-
nology has produced large quantities of genomic data to
analyze, improvements upon QTM methods continue to
be developed. Non–tree-based methods exist to analyze
complex data sets, but such methods tend to find large
genetic effects. Currently, tree-based methods are able
to analyze only basic genetic data sets, but more fully
use implicit information in the genetic data to estimate
the evolutionary relatedness among observations. These
methods may improve upon QTM performance of non–
tree-based methods, and could be extended so they are
able to analyze more complex scenarios, such as inclusion
of external covariates. Doing so would address a current
limitation of tree-based association mapping methods and
could improve the performance of methods in explaining
variation in quantitative traits under study.
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