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Abstract

Structural equation modeling (SEM) has been used in a wide range of applied sciences including genetic analysis.
The recently developed R package, strum, implements a framework for SEM for general pedigree data. We explored
different SEM techniques using strum to analyze the multivariate longitudinal data and to ultimately test the
association of genotypes on blood pressure traits. The quantitative blood pressure (BP) traits, systolic BP (SBP)
and diastolic BP (DBP) were analyzed as the main traits of interest with age, sex, and smoking status as covariates. The
single nucleotide polymorphism (SNP) genotype information from genome-wide association studies (GWAS) data was
used for the test of association. The adjustment for hypertension treatment effect was done by the censored
regression approach. Two different longitudinal data models, autoregressive model and latent growth curve
model, were used to fit the longitudinal BP traits. The test of association for SNP was done using a novel
score test within the SEM framework of strum. We found the 10 SNPs within the GWAS suggestive P value
level, and among those 10, the most significant top 3 SNPs agreed in rank in both analysis models. The
general SEM framework in strum is very useful to model and test for the association with massive genotype
data and complex systems of multiple phenotypes with general pedigree data.
Background
Structural equation modeling (SEM) has been used
in a wide range of applied sciences as well as in
genetic analysis [1, 2], particularly for longitudinal
data analysis [3, 4]. SEM is a general and powerful
approach to account for measurement error and
causal pathways by estimating the parameters for a
system of simultaneous equations [5, 6]. The R pack-
age strum was recently developed [7], implementing
the framework for SEM for general pedigrees de-
scribed in Morris et al. [8]. It includes both fitting
and simulation of a broad range of latent measure-
ment models and structural equation models with
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covariates, allowing for a wide variety of models in-
cluding latent growth curve models. It can handle
multilevel models, polygenic random effects and
linkage random effects. Traditional structural equa-
tion models and confirmatory factor analysis may
also be performed.
The Genetic Analysis Workshop 19 family data set

includes the longitudinal multivariate blood pressure
traits. This complexity of traits in this data set pro-
vides a good opportunity to evaluate the flexibility
and applicability of the strum package for modeling
in family data. This paper explores the 2 different
SEM techniques using strum to analyze the multivari-
ate longitudinal data and, ultimately, to test the asso-
ciation of genotype to blood pressure (BP) traits,
looking for a set of single-nucleotide polymorphisms
(SNPs) that came up as significant in both analysis
models.
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Methods
Data
We analyzed the real family data set, which consists of
1389 individuals from 20 families with 27 to 107 mem-
bers. The detailed description of the data can be found
in Almasy et al. [9]. The quantitative BP traits, systolic
BP (SBP) and diastolic BP (DBP) were analyzed as the
main traits of interest. We included age, sex, and
smoking status as covariates. For both methods, we
only included the first 3 visits into our analysis as
more than 80 % of data were missing for the 4th
visit, and there were 10 families with completely
missing data for the 4th visit. The genotype informa-
tion from genome-wide association studies (GWAS)
data was used, which included 472,060 SNPs in total.
After removing the SNPs with no variation in the
data set or with no score test results, the remaining
460,359 SNPs were tested for association with the
main traits by coding additively as 0, 1, or 2 based
on the minor allele count.
Before being included in any structural equation ana-

lysis, the BP trait value at each visit was adjusted for the
effect of hypertension medication as done by other re-
searchers, to reduce the bias in the estimated effect of
interest and the loss in statistical power [10]. We
followed the censored regression approach of Konigorski
et al. [11]. The difference between the observed and
fitted BP for the untreated individuals and the difference
Fig. 1 Analysis models. The graphical representations of analysis models w
a an autoregressive model and b a latent growth curve model. Variables rS
hypertension medication. LBP is a latent variable, and aSNP is a SNP tested
effects. I is the intercept and S is the slope. Note that the coefficient to tes
between the adjusted and fitted BP for the treated indi-
viduals are used as our main BP trait values (denoted as
rSBP and rDBP).

Analysis
We included 2 different types of longitudinal data mod-
eling approaches in this study: autoregressive (AR)
model and latent growth curve (LG) model. In both
models, the observed values of SBP and DBP at each
time point are assumed to include measurement errors.
In each time point, it is assumed that there is a latent
variable that affects both SBP and DBP in both
models. However, the relationship among the latent
variables at different time points and the SNP effect
on the underlying latent variables are differently mod-
eled in each analysis model. Therefore, the number of
parameters estimated in the correlation structure is
different in each model. The visual presentations of
the 2 models are shown in Fig. 1. The pedigree rela-
tionship is incorporated in the model by including
and simultaneously estimating the polygenic effect
denoted as circled p in Fig. 1.

Model 1: autoregressive model with measurement error
This is a first-order AR model with measurement error.
In this model, the latent variable at t(n) is a function of
the latent variable at t(n-1) and not any variable before,
so the true underlying latent variable has an AR
ith latent variable for longitudinal blood pressures are shown for:
BP and rDBP are the main trait values corrected for the use of
. Nodes marked with: “p” are polygenic effects, and “e” are random
t the SNP effect on blood pressure traits is colored in red
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structure. The SNP effect is modeled directly on the
latent variable in the first time point and indirectly to
other time points.

Model 2: latent growth curve model with latent slope and
intercept
This is a method to study growth (or change) over time.
In this model, the latent variables at different time
points share a common intercept with different slopes.
The model includes the SNP effects directly on the
intercept, so the SNP effects all time points equally. This
approach models individual change process as function
of latent intercept and slope factors.
Based on the original strum framework, we developed

a new score test. This method is a computationally rapid
test of association with many SNPs in GWAS data
(manuscript in preparation). In this new score test, we
first assessed the null model fit without any SNPs in the
model to confirm the appropriateness of the model for
the data. For each model, we ran the analysis 3 times to
make sure the results were fully converged. Then, one at
a time, each SNP was tested for association with the BP
traits.

Results
The overall results of the association tests for all
SNPs are shown in Fig. 2 as the quantile–quantile
(Q-Q) plots of the observed and expected P values
for 2 analysis models. The genomic inflation factors
were 1.01 and 1.02 for each model. Even though the
SNP effect was modeled differently, the ranking of
P values from both models was very close (correl-
ation = 0.9). Out of total 460,359 SNPs tested, there
Fig. 2 Quantile–quantile (Q-Q) plots of P values from genome-wide associa
GWAS result are shown for a an autoregressive model and b a latent grow
were 26 SNPs for the AR model and 18 SNPs for the
LG model with suggestive evidence of association (ie,
P value < 1.0e-5). Among those, 10 SNPs were the
same from both models, and 4 SNPs on chromosome
1 are located close to each other indicating that they
are in high linkage disequilibrium (LD). Table 1
shows the characteristics and P values. Interestingly,
the most significant top 3 SNPs from both models
agreed in rank as shown in Fig. 2.

Discussion
There have been several recent genetic studies on BP
traits [12, 13]. In most studies, 2 BP traits, SBP and
DBP, are analyzed separately or they are summarized
into 1 value. In addition, the longitudinal values are
also summarized into a value. In our study, we re-
port the SNPs associated with the latent variable for
both BP traits longitudinally. Therefore, our results
and the results from the association test on the sum-
marized BP trait may not be easily comparable, and
our results provide different GWAS findings. How-
ever, the differences and agreements of the results
from ours and from the analysis done in each time
points separately might give another interesting and
useful insight into the relation between BP traits and
genotypes.
The unbalanced missing rates in each time points with

the longitudinal data were a limitation with this study.
We were only able to include the first 3 visits into our
analysis since there were 10 families with the completely
missing data for the 4th visit which would have reduced
the effective sample size to 10 from the original 20
families.
tion study. The Q-Q plots of the observed and expected P values of
th curve model



Table 1 SNPs associated with SBP and DBP in both analysis models

Ch SNP BP Known gene Al MAF AR P value LG P value

1 rs155633 29928916 G/T 0.0232 5.510E-41 1.015E-16

1 rs12021586 35629454 PSMB2 G/T 0.0102 2.057E-24 1.223E-13

1 rs4453019 196101652 C/T 0.1851 4.190E-06 3.911E-06

1 rs11584379 196114488 T/G 0.1448 3.916E-06 3.548E-06

1 rs6696438 196115362 C/T 0.1476 2.153E-06 1.910E-06

1 rs16839516 196135852 G/A 0.1382 2.389E-06 1.660E-06

7 rs11974781 147348978 CNTNAP2 G/T 0.0208 2.31E-125 1.011E-29

11 rs10792447 64824500 CDC42BPG T/C 0.4115 7.450E-06 2.640E-06

13 rs4143295 107787911 FAM155A T/G 0.1314 2.059E-06 8.258E-06

17 rs3760323 35433147 SLFN12 C/T 0.1208 7.443E-06 7.455E-06

Information on 10 SNPs from both analysis models with P value < 1.0e-5
Al major/minor alleles, BP base position, Ch chromosome, MAF minor allele frequency
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Similar results were found from 2 different analysis
models, but there were differences in magnitude of P
values for the top hits. This might be a result of the dif-
ferences in the number of parameters in the models.
Also, the highly significant P values for the same top 3
SNPs from both models might be a result of the low
minor allele frequency (MAF). Upon further examin-
ation, we found the minor allele was not present in
many families, reducing the effective sample size. The
effect of MAF on type I error in family data using this
approach needs to be investigated.

Conclusions
The initial version of the novel score test we have devel-
oped is computationally efficient enough for genome
wide analysis, but its statistical properties need to be
more fully evaluated. Among the results from 2 analysis
models, that is, the AR model and LG model, we found
the 10 SNPs within the GWAS suggestive P value level,
and among those 10, the most significant top 3 SNPs
agreed in rank in both analysis models. The similar re-
sults from both models provide more confidence on the
results. The general SEM framework in strum is very
useful to model and test for the association with massive
genotype data and complex systems of multiple pheno-
types with general pedigree data.
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