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Abstract

Background: Genetic association studies aim to test for disease or trait association with genetic variants, either
throughout the human genome or in regions of interest. However, for most diseases and traits, the combined
effects of associated genetic variants explain only a small proportion of the genetic variation. This “missing
heritability” may be a result of the small effects of common variants considered in the genetic association studies.
Rare variants may also play an important role in understanding the missing heritability of complex traits.

Method: We propose a novel weight-adjustment approach to combine gene expression into rare variant analysis.
Results from previous simulation studies suggested that incorporating gene expression information can lead to
substantial gain in statistical power.

Results: Using the family data set provided through the Genetic Analysis Workshop 19, we identified susceptible
genes associated with blood pressure regulation.

Conclusions: These findings provide valuable information for further functional studies for blood pressure control
and mechanism.
Background
In the past decade, genome-wide association studies
(GWAS) have been successful in identifying susceptible
genetic loci for many complex traits [1]. However, the
study by Eichler et al. reported that the amount of genetic
variations explained by the findings from GWAS for a
given disease or complex trait is often notably less than
the estimated heritability of the traits [2]. One explanation
is that the common variants examined by GWAS often
have smaller effects, and the rare variants with larger gen-
etic effects are often excluded in a GWAS analysis.
Rare variants may play an important role in explaining

the “missing heritability” of complex traits. As a result of
recent advances in high-throughput sequencing technol-
ogy, it is becoming financially feasible to assay rare genetic
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variations in thousands of individuals. The rare variants
here are defined as genetic variants with a minor allele
frequency of less than 1 %. Hence the typical GWAS
strategy of analyzing one variant at a time is oftentimes
underpowered for rare variant detection unless the effect
size of the variant or the sample size is very large. A num-
ber of methods have been developed to analyze multiple
rare variants jointly [3–5]. In this paper, we consider the
Seq-aSum-VS approach developed by Basu and Pan [3].
This approach uses dimension-reduction and data-
adaptive variable selection strategies to identify the non-
null variants from a group of genetic variants and uses a
score test to test for association between the group of
variants and the disease of interest.
It often still requires a relatively large sample size for rare

variant analyses. To boost the statistical power of genetic
association analysis, one research direction is to integrate
various genomic information, such as gene expression, rare
variants, copy number variation, methylation, transcriptional
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regulation, and protein abundance. With the availability
of both rare variant genotype and gene expression in-
formation in the family data set through Genetic
Analysis Workshop 19 (GAW19), we proposed a novel
approach to incorporate gene expression into rare vari-
ant association analysis in this paper.
Genovese et al. [6] introduced the idea of using prior

knowledge to weight p values from a genome-wide associ-
ation study and provided theoretical proof for controlling
family-wise error rate (FWER). In this paper, our contribu-
tion is to provide a formal mechanism to construct
weights using available information about rare variants
and gene expression. Studies by Li et al. [7] and Ho et al.
[8] demonstrate that by incorporating additional genomic
information, the weight-adjustment procedure can in-
crease statistical power drastically compared to the trad-
itional genetic association analysis.

Methods
There are 259 participants with full genotype, expression,
and blood pressure data available in the GAW19 family
data set. Our analysis focuses on systolic blood pressure
(SBP) and diastolic blood pressure (DBP) as outcomes of
interest. The average SBP and DBP from all visits were
used as the summary measurement respectively for every
participant. To adjust for pedigree structure in this data,
we estimated identity-by-descent (IBD) matrix (Σ) using
genome-wide single nucleotide polymorphism (SNP)
marker data obtained using the Illumina platform provided
through GAW19. To incorporate the dependence infor-
mation embedded in the family structure, we transformed

the average blood pressure measurements: YeMVN μ;Σð Þ;
Y� ¼ Σ−1

2YeMVN μ; Ið Þ , so that individuals from the
same family are independent in the transformed pheno-
typic value (Y*). In addition, to account for the population
stratifications that exist in the Mexican American pop-
ulation, we performed multidimensional scaling and cal-
culated the first 3 principal components. In the following
analysis, the residual from the transformed phenotypic
value adjusting for the first 3 principal components were
used. We considered genetic variant with a minor allele
frequency of less than 0.01 as rare variant, and performed
rare variants analysis for the genes reported by hg19 build
on the odd-number autosomes that have less than 50 rare
variants and more than 1 rare variant.

Sequential sum test
Consider k rare variants in a gene and that SNPi
indicates the number of rare variant alleles in variant i

in a general regression equation: g E Yð Þð Þ ¼ β0 þ
Xk

i¼1

γ iSNPiβc , with γi = νisi; where si is 1, −1, or 0, indicating
whether the effect of rare variant i is positive or negative or
excluded from the equation, and vi is a weight assigned to
rare variant i. In our analysis, we assumed vi = 1. In
addition, βc represents the common odds ratio between
the trait and the rare variants in the gene. We performed
the Seq-aSum-VS approach described in Basu and Pan
[3] and obtained p value for each gene with 500
permutations.

Constructing weights using expression measurements
After obtaining the p value for each gene from the Seq-
aSum-VS test, we used gene expression information to
construct weight for each gene. In Roeder et al. [9, 10], the
authors suggested to use a weight (wi > 0) to adjust p value
(pi) and to reject the null hypothesis if it belongs to the set
of all gene i for which pi/wi ≤ α. The weight adjustment
procedure maintains the proper FWER control as long as
wi > 0 and wi ¼ 1.
Building on the theoretical findings, we developed a

novel weight-adjustment approach for rare variant
association analysis. After weight adjustment, genes that
have strong contributions to phenotype-associated gene
expression will be assigned weights greater than 1, hence
achieving smaller weight-adjusted p values. The weight-
ing mechanism is as follows: we assign a weight wi to
each gene and the weight is the product of 2 parts: wgiEj

and wEjP. The first term; wgiEj ;indicates the effect of gene
gi on the jth gene expression measurement, Ej. The
second term, wEjP; describes whether gene expression
measurement (Ej) is associated with the phenotypic
outcome (P). Eq. (1) is applied to obtain wgiEj :

Ej ¼ β0ij þ βgiEj
� gi þ γ ij � P þ �ij ð1Þ

and wgiEj ¼
cβgiEj

SE cβgiEj
� �
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. In equation 1, gi is the number

of total rare variants in gene i calculated by collapsing
the genotypes across rare variant loci. A second equation

(2) was implemented to obtain wEjP ¼
cβEjP

SE cβEjP
� �
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:

P ¼ β0ij þ βEjP � Ej þ γ ij � gi þ �ij ð2Þ

The benefit of taking the product of 2 weights is that if
either wgiEj or wEjP is zero, then the resulting product
will be zero. On the other hand, if both wgiEj and wEjP

are substantially large, then taking the product of the
two parts will result in an amplified overall weight. In
other words, if rare variants in the gene under consider-
ation provide a strong contribution to outcome P
through Ej, then wgiEj � wEjP will be a large value.
A crude weight for gene i is set to be the maximum of

the products among all gene expression measurements:
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wMPi ¼ Maxj wgiEj � wEjP
� �

. To ensure that w� ¼ 1 , we
divide crude weights (wMPiÞ by their average (wMP ) as

required by Roeder and Wasserman [10]: w�
MPi

¼ wMPi
¼wMPi

. If
wMPi is larger than the average, then w�

MPi
will be greater

than 1 after dividing by the average. We calculate
adjusted p value for the ith gene as: adjusted p value for

gene i ¼ p value of gene i reported by Seq‐aSum‐VS test
w�
MPi

. If after

adjustment, p value becomes greater than 1, then it is
set to 1.
For the genes with adjusted p value of less than 0.05, we

performed gene set enrichment analysis using biological
process categories defined in gene ontology (GO). To
account for the hierarchical structure in GO terms, we
implemented conditional hypergeometric test [11].
Results
Of the 13,711 genes on the odd-numbered autosomes
based on the hg19 build, we considered 6118 genes with
less than 50 rare variants and more than 1 rare variant
in the analysis. We identified 153 genes with weight-
adjusted p values of less than 0.05 for SBP or DBP; the
top 20 genes are listed in Table 1. The genes with strong
contribution to phenotype-associated gene expression
levels are assigned weights greater than 1. In Table 1, 17
Table 1 Top 20 genes with adjusted p value of <0.05 from the Seq-

Gene Chr # RVs p Values

1 NAIF1 9 23 <0.002

2 SPATA13-AS1 13 7 <0.002

3 UTP11L 1 34 <0.002

4 C1orf174 1 36 <0.002

5 KRTAP23-1 21 2 <0.002

6 ZNF14 19 49 <0.002

7 LOC101926911 15 28 <0.002

8 SGSH 17 45 0.002

9 UROD 1 6 0.002

10 HES2 1 13 0.002

11 CHRNB1 17 50 0.008

12 ZBTB47 3 42 0.004

13 MIR4467 7 2 0.004

14 GTF3A 13 31 0.006

15 HMGB4 1 20 0.012

16 TEKT2 1 27 0.012

17 COX8A 11 12 0.006

18 MED29 19 27 0.010

19 C11orf21 11 32 0.008

20 PRAMEF17 1 5 0.014

Chr chromosome, ps
* weight adjusted p value for SBP, p values p value for SBP, # RV

Subscript D represents statistics for DBP
genes have weights for SBP greater than 1 and 18 genes
have weights for DBP greater than 1, indicating that these
genes contribute to alterations of phenotype-associated
gene expression levels.
We performed gene-set enrichment analysis for these

153 significant genes using GO biological process cat-
egories. The top 15 enriched gene sets with more than
ten genes are reported in Table 2 with p value of less
than 0.05. The results suggest that these reported 153
genes are involved in the regulation of blood pressure,
and blood vessel size pathways (p value <0.03). Interest-
ingly, these 153 blood pressure–associated genes are also
significantly involved in sensory perception of sound.
Hypertension has been clinically observed to be corre-
lated with hearing loss [12]. The result could suggest
genetic basis for the correlation between hypertension
and hearing function. However, further study is needed
to validate the findings in this study.

Discussion
Many of the genes reported in Table 1 achieve smaller p
values after the weight adjustment procedure in this
analysis. In Table 1, we listed genes with weight-adjusted p
values of less than 0.05. Multiple comparisons, such as
Bonferroni threshold, could be adapted and applied using
the weight-adjusted p values. In this analysis, the threshold
aSum-VS test for either SNP or DBP

Ws ps
* p ValueD WD pD

*

1.306 <0.002 0.002 0.825 0.002

0.986 <0.003 0.018 0.835 0.022

0.828 <0.003 0.006 1.168 0.005

2.473 <0.002 <0.002 2.049 <0.002

0.955 <0.003 <0.002 0.586 <0.004

0.625 <0.004 0.012 0.788 0.015

0.526 <0.004 0.008 0.856 0.009

1.839 0.001 0.004 0.842 0.005

1.523 0.001 0.040 1.870 0.021

0.858 0.002 0.016 0.694 0.023

2.413 0.003 0.022 1.422 0.015

1.106 0.004 0.076 1.465 0.052

0.879 0.005 0.006 0.848 0.007

0.918 0.007 0.002 1.178 0.002

1.593 0.008 0.062 1.248 0.050

1.481 0.008 0.006 1.782 0.003

0.722 0.008 0.006 1.043 0.006

1.202 0.008 0.026 0.637 0.041

0.951 0.008 0.038 1.172 0.032

1.656 0.008 0.054 0.721 0.075

s number of rare variants identified in the gene, Ws weight for SBP



Table 2 Enriched GO biological processes (p value <0.05) for the top 153 blood pressure–associated genes

GOBPID Count Size Term p Value

1 GO:0007600 10 107 Sensory perception 0.0031

2 GO:0050873 3 12 Brown fat cell differentiation 0.0069

3 GO:0007605 4 26 Sensory perception of sound 0.0109

4 GO:0048869 26 495 Cellular developmental process 0.0123

5 GO:0003013 6 57 Circulatory system process 0.0123

6 GO:0042981 15 239 Regulation of apoptotic process 0.0142

7 GO:0012501 17 288 Programmed cell death 0.0161

8 GO:0008544 7 79 Epidermis development 0.0173

9 GO:0031424 4 30 Keratinization 0.0180

10 GO:0010941 15 246 Regulation of cell death 0.0182

11 GO:0007369 3 18 Gastrulation 0.0220

12 GO:0045638 3 18 Negative regulation of myeloid cell differentiation 0.0220

13 GO:0050880 3 19 Regulation of blood vessel size 0.0255

14 GO:0008217 3 20 Regulation of blood pressure 0.0277

15 GO:0016265 17 312 Death 0.0331

GOBPID GO biological process ID
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is 0.05/6118 ≅ 8 × 10− 6 and none of the genes reported in
Table 1 exceeded this stringent threshold value. In addition,
we chose the Seq-aSum-VS test to obtain a p value for
each gene in this paper; other approaches, such as the
sequence kernel association test (SKAT) [5], can also be
used to obtain the p value for each gene and the
weighting scheme proposed in this study can then be
used to calculated weight-adjusted p values. To obtain
wgiEj , we summed the total number of rare variants
across all the loci in a gene in equation (1) by assuming
all the rare variants have similar effects on Ej. An alter-
native approach to calculate wgiEj is to replace equation
(1) by the test statistic reported Seq-aSum-VS test while
treating gene expression as the outcome. The alterna-
tive approach does not assume that all the rare
variants have the same effects on Ej; however, the
alternative approach might be more computationally
intensive.
In this analysis, we did not consider genes with more

than 50 rare variants. In a gene with a large number of
rare variants, many of the variants might be null-
variants, which will cause the estimated effects for genes
with large numbers of rare variants to be diluted. For
gene with a large number of rare variants, we suggest to
use a moving window approach and only consider a
feasible number of rare variants in a window.
Furthermore, for data collected in a case–control

design, our proposed approach is easily modified by
logistic regression and applied. The weighting scheme
proposed in this study is also usable when only a subset of
the individuals have gene expression measurements
available. It is also modifiable for when SNP, gene expres-
sion data and gene expression, phenotype data are from
two different sets of cohorts, instead of paired gene ex-
pression and GWAS data from the same cohort. However,
paired gene expression and GWAS data from the same
cohort might be preferable, as the data will have increased
power to detect the causative relationship (SNP→E→P)
but not the reactive relationship (SNP→P→E) based on
the simulation study described in [8].
In the data analysis, we observed genes with small p

values without evidence of gene expression association.
It is biologically possible that genetic variants could
cause phenotypic changes without altering gene expres-
sion level. Thus in practice, we suggest to pursue genes
with either (a) small p values from Seq-aSum-VS test or
(b) small weight-adjusted p values.
Conclusions
In this paper, we proposed a novel approach to incorpor-
ate gene expression information into rare variant associ-
ation analysis. Using the weight-adjustment approach,
this method upweights the genes that contribute to
phenotype-associated gene expression and downweights
others. This weight-adjustment approach is expected to
boost the power of association analysis by incorporating
additional genomic information while keeping the FWER
controlled at a nominal level. Both simulation studies
and experimental findings reported in Li et al. [7] and
Ho et al. [8] support the expected gain in power through
the weight-adjustment procedure.
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