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Abstract

For a better understanding of the biological mechanisms involved in complex traits or diseases, networks are often
useful tools in genetic studies: coexpression networks based on pairwise correlations between genes are commonly
used. In case of a family-based design, it can be problematic when there is a large between-family variation in
expression levels. We propose here a gene coexpression network analysis for family studies. We build a coexpression
network for each family and then combine the results. We applied our approach to data provided for analysis in the
Genetic Analysis Workshop 19 and compared it to 2 naïve approaches—ignoring correlations among the expressions
and decorrelating the gene expression by using the residuals of a mixed model—and a single-probe analysis. Our
approach seemed to better deal with heterogeneity with regard to the naïve approaches. The naïve approaches did
not provide any significant results, while our approach detected genes via indirect effects. It also detected more genes
than the single-probe analysis.
Background
Weighted gene coexpression network is a widely used
method for studying biological networks based on pairwise
correlations. This method provides more insight in the
underlying biological mechanisms and offers a tool for di-
mension reduction by summarizing identified modules (clus-
ters) of genes [1, 2]. How to perform such an analysis for
family data is an open question. For family data Kraft et al.
[3] noted that testing association between expression levels
and traits without taking into account the family structure
can lead to spurious results, especially when the number of
families is small and in the presence of large between-family
variation. In this paper, we propose a novel strategy for net-
work analyses in a small set of relatively large families.
For this family-based approach, we first construct

family-specific coexpression networks and test for
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association between the modules and the traits of inter-
est. A common set of genes for all families was obtained
by using the intersection and the union of family-
specific modules. We compare this family-based ap-
proach with 2 naïve approaches: namely, one using the
gene expression of the families directly (ignoring correl-
ation) and one that first decorrelates the gene expres-
sions and then applies the standard approach. We also
compare our results with single-probe analyses.
Methods
Study sample
The gene expression data set is composed of 647 indi-
viduals from 17 large families. These samples are from
the data set described in Almasy et al. [4]. Here, we
focus on the largest 5 families: namely families 2, 5, 6, 8,
and 10 with 65, 55, 45, 62, and 49 family members, re-
spectively. The total number of individuals is 276 and
the total number of probes from which gene expression
is available is 20,364. We used the simulated quantitative
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phenotypes systolic blood pressure (SBP) and the pheno-
type Q1 at time point 1 as outcome variables. The simu-
lation model of SBP comprises 15 genes and that of Q1
does not contain any of these genes. SBP, Q1, and all
probes were corrected for age and sex by regressing out
covariates and using residuals.
To decorrelate the gene expressions, we fitted for

each probe a linear mixed model: Xij = μ + uij + vi + εij,
with Xij the value of the probe for the individual j in
family i, uij a normally distributed random genetic ef-
fect: uij ~ N(0, S) where S = 2 * K * sg with K kinship
matrix and sg genetic variance, vi a normally distrib-
uted random effect representing shared environmental
effects, and εij a normally distributed residual. To ob-
tain the residuals Xij

* of this model, we used the func-
tion lmekin, which fits linear mixed models with
specific structure of the variance-covariance matrix
from the package coxme [5] in R.

Single-probe analysis
For the single-probe analysis the following mixed model
was used:

Y ij ¼ μþ uij þ vi þ βXij þ εij ð1Þ

with Yij the value of SBP or Q1 and Xij the value of
the probe for individual j of family i. The random ef-
fects uij, vi and εij are the genetic effect, the shared
environmental effect and residuals respectively. The
parameter β represents the effect of the probe on the
outcome variable.

Network constructions
Coexpression networks were built on the data set with-
out correction for family structure based on Xij (naïve
approach), the data set adjusted for family structure
based on Xij

* (naïve decorrelated approach), and on the
data sets from the 5 families separately.
We used signed coexpression networks. The adja-

cency matrix A = [alk] of each network was computed
as follows: alk = |0.5 + 0.5 × cor(xl, xk)|

γ, with cor(xl, xk)
the correlation between xl the values vector of probe
l and xk the values vector of probe k. The parameter
γ is acting as a soft threshold in the adjacency matrix,
when we increase the value γ the coefficient of the
adjacency matrix will tend toward zero except for
values really close to 1. We used the biweight midcorrela-
tion based on the median, which is more robust than the
Pearson correlation. The co-expression networks were
constructed with the R package WGCNA (weighted gene
correlation network analysis) [6]. For each obtained
module, the first principal component (eigengene) was
computed.
Phenotype analysis
From all modules and all families, the following models
were fitted:

Y j ¼ μþ uj þ βeigengenekj þ εj ð2Þ

where Yj is the outcome, uj the random genetic effect,
and eigengenej

k the value of the eigengene of module k
of family member j. Let EF2

M to EF10
M be the most sig-

nificant eigenvalues of the family specific networks
(NF2 to NF10) and let EF

M be the most significant
eigenvalue of these 5 eigenvalues and MF

M be the cor-
responding module. Identify the modules of the
family-specific networks, which have the highest overlap
with MF

M (denoted as MF2
O to MF10

O ). Next, 2 common sets
of genes for all families were obtained by taking the inter-
section (MF =MF2

O ∩MF5
O ∩MF6

O ∩MF8
O ∩MF10

O ) and the
union (MF =MF2

O ∪MF5
O ∪MF6

O ∪MF8
O ∪MF10

O ) of the family
specific modules. The first principal components of the 2
common sets were computed. The principal component
that explained most of the variance of the corresponding
set of genes was used as the eigengene EF of the family-
based approach.
The eigengenes of the naïve approach (EN), the naïve

approach after decorrelation (END), and the family-based
approach (EF) are tested for association with the 2 phe-
notypes SBP and Q1. Here, the following mixed model
was used:

Y ij ¼ μþ uij þ vi þ βeigengenekij þ εij ð3Þ

with Yij the phenotype value for individual j of family i
and eigengeneij

k the value of eigengene of module k of
individual j of family i. And uij, vi and εij are the genetic
effect, the shared environmental effect and residuals,
respectively. The parameter β represents the effect of
the eigengene k on the outcome variable.
Finally, because spurious associations are especially ex-

pected in the presence of large between-family hetero-
geneity [1], we also performed a network analysis using
the subset of 25 % most heritable probes when perform-
ing the network analysis (n = 4911 probes with heritabil-
ity between 0.33 and 0.88).
To test for significance we used a nominal alpha level

of 0.05 and the Bonferroni correction was applied to
take into account multiple testing.

Results
Results obtained with all probes
For per family analysis, the module that showed the
highest correlation with the SBP was the magenta mod-
ule obtained in family 8 (MF8

M) (β = 2.52, p = 0.0011). MF8
M

comprises 710 genes. Table 1 gives for each family the
number of genes of the module with the highest overlap.
The intersection and the union of these 5 family



Table 1 Module size of MF2
O to MF10

O and overlap size with MF
M

in the all-probes analysis

MF2
O MF5

O MF6
O MF8

O MF10
O

Module size 446 694 499 710 446

Size of the overlap with MF
M 187 308 240 710 372
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modules, comprises 62 and 1746 probes, respectively.
The first principal component (eigengene) of the probes
in the intersection set explained more than 50 % of the
variance for each family, while for the union set the
eigengene explained only between 23 % and 31 % of the
variance of the expression levels. Therefore the eigen-
gene of the intersection set was used as summary for the
family approach (EF). In Table 2, for each family the ef-
fect of EFi on SBP (β of model (2)) is given. For families
2 and 8, the eigengenes (EF2 and EF8) were significantly
associated with SBP.
When analyzing all families together, none of the

approaches provided significant results. The joint ana-
lysis of the families using EF as eigengene in model (3)
did not provide a significant association SBP (β = −0.13,
p = 0.49). For the naïve approach, the eigengene of the
module magenta (EN) had the smallest p value (β = −3.21,
p = 0.01). For the naïve approach using the decorrelated
data set, the eigengene of the module grey60 (END)
had the smallest p value (β = −3.03, p = 0.0061). After
multiple-testing correction (between 43 and 50 mod-
ules in each network) none of the results were signifi-
cant. Finally the single-probe analysis preformed in
the 5 families by using model (1) provided 1 signifi-
cantly associated probe with SBP (CRIP2; β = −13.68,
p = 1.7e-06).
The intersection module of the family based approach

did not contain any of the 15 genes used for the simula-
tion. Also, the identified gene of the single-probe
Table 2 Parameter estimates of the association between
eigengenes and Q1 and SBP

All-probes 25 % Most heritable probes

SBP Q1 SBP Q1

EF2 −0.57(0.2) (0.02)a 9.90(4.3) (0.02) 0.27(0.1) (0.07) −1.62(1.0) (0.11)

EF5 0.34(0.2) (0.21) 14.0(4.7) (3.3e-3) 0.18(0.2) (0.41) −2.13(1.3) (0.11)

EF6 0.08(0.3) (0.78) 8.90(3.7) (0.02) 0.66(0.3) (0.01)a 2.49(0.9) (9.6e-3)

EF8 −0.62(0.3) (0.04)a 10.47(4.2) (0.01) 0.07(0.2) (0.68) 2.47(1.0) (0.02)

EF10 0.14(0.3) (0.67) 7.55(4.5) (0.09) 0.02(0.2) (0.91) −2.22(1.2) (0.06)

EF −0.13(0.2) (0.49) - 0.21(0.09) (0.02)a -

EN −3.21(1.3) (0.01) 2.75(0.7) (5.6e-4)a 1.93(0.8) (0.01) −0.96(0.5) (0.06)

END −3.03(1.1) (6.1e-3) −1.41(0.4) (9.4e-4)a 1.94(0.7) (5e-3)a −0.41(0.2) (0.06)

In parentheses are standard errors and p values, respectively. For EF2 to EF10
model (2) was used; for EF, EN and END model (3) was used. For Q1 the
association results for EF2

M to EF10
M are presented

a Denotes significant test after multiple testing corrections
analysis is not among these 15 genes. We hypothesized
that correlation might exist between EF2, EF8, and the
gene expression of CRIP2 on one hand and the set of
15 genes on the other hand. Indeed, EF2 showed signifi-
cant correlation with PSMD5 (p = 0.004) and GTF2IRD1
(p = 0.007), and EF8 showed significant correlation
with ZNF443 (p = 5e-05), PSMD5 (p = 3e-05), and
ABTB1 (p = 6e-05). When the presence of these 15
genes in the modules was investigated, it appeared
that they were in different modules (Table 3). The
gene CRIP2, which was significant in the single-probe
analysis, showed significant correlation with the gene
KRTAP11-1 (p = 3.1e-03).

Analysis of Q1
The results of the analysis of Q1 are also given in
Table 2. For the family approach, none of the modules
obtained in family-specific network analysis was signifi-
cantly associated with Q1 and no common set could be
defined. In Table 2, the estimates of strongest associated
modules EF

M for each family are given. For the naïve
approach, the module red (EN) (β = 2.75, p = 0.00056)
was significant and for the naïve approach using the
decorrelated data the module green (END) (β = −1.41,
p = 0.00094) was significantly associated with Q1.

Results obtained with the 25 % most heritable probes
For the naïve and the family approaches, the results of
the network-based analyses using only the gene expres-
sions of the 25 % most heritable probes (n = 4911 probes
with heritability between 0.33 and 0.88) are also given in
Table 2. None of the 15 genes used in the simulation
model for SBP was among this set of most heritable
probes. For Family 6 the EF6 was significantly associated
with SBP (p = 0.01). The association of EF in the 5 fam-
ilies with SBP was also significant (p = 0.02). For Q1,
none of the approaches provided significant results.
With regard to the single-probe analysis, no probe other
than CRIP2 was significantly associated.

Discussion
In this paper, we have proposed a novel strategy to per-
form a coexpression network analysis with family data:
building a network for each of the large pedigrees and
defining a common module by taking the intersection of
family-specific modules. We compared our family-based
approach with 2 naïve network approaches and a single-
probe analysis. All analyses were performed in a small
set of 5 relatively large families. None of the 15 genes in
the simulation model was identified in this small data
set. However, the family-based approach identified sig-
nificant associations between the eigengene and SBP in
2 families. This eigengene was significantly correlated
with 4 of the 15 genes. When analyzing all families



Table 3 List of the top genes involved in the simulation model and their module color in each network

–, Denotes the grey module in which all nonclustered genes are combined. The different colors represent genes in the same module for a specific network
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jointly the family eigengene was not significant. Also the
naïve network approaches did not provide any signifi-
cant result. The single-probe analysis provided 1 signifi-
cant gene, which was correlated with 1 of the 15 genes.
To study the performance of the methods with regard to
false-positive findings, we also analyzed the trait Q1 for
which no gene expressions were included in the simula-
tion model. The family approach did not provide a
significant finding, whereas both naïve approaches iden-
tified a significant module for Q1. The result in the
naïve approach based on gene expression (Xij) is in line
with the findings of Kraft et al. [3]. We did not expect to
have a false-positive finding when using the decorrelated
data (Xij

* ) as input for our network analysis. Possible ex-
planations for this finding are the fact that the correl-
ation based on the kinship coefficient might not be
appropriate for gene expressions, and randomness. In
addition to the set of all probes, networks were also built
using only the 25 % most heritable probes. Especially for
these variables that show large between-family variation
spurious associations might occur when the family struc-
ture is not taken into account. This was not confirmed
in our analysis. More research is needed to study the
sensitivity of the methods for between-family variation.
We did not know the answers when we developed the

family-based approach and analyzed the data. The simu-
lation model used to create the data sets may not be well
suited to pick up the 15 genes directly by network ana-
lysis. The 15 genes present in the model were in different
pathways: they were not correlated. Moreover our approach
was able to identify indirect effects: that is, the eigengenes
were correlated with the 15 genes. Thus the significant as-
sociation of the family-based network approach represented
the largest number of genes from the simulation model.
We expect that especially in the presence of large between-
family variation our approach would perform best. A thor-
ough simulation study is required to investigate the per-
formance of our method further.
Network analysis provides a tool to reduce the number

of tests by first summarizing the data in sets of genes with
correlated gene expressions and summarizing the gene set
by the first principle component. Another obvious reduc-
tion step is to only consider the heritable probes for the
analysis. It appeared that by using the heritable probes the
results across the families were less heterogeneous. The
family approach, as well as the naïve approach using dec-
orrelated data, provided significant results for SBP.

Conclusions
In this paper we combined the family-specific modules by
taking the intersection of the modules which showed most
overlap. This approach worked well for the relatively small
set of 5 families. When we applied our method to the 6 lar-
gest families, similar results were obtained (data not shown).
However, intersection might not be the most appropriate
approach to combine modules across families, because the
intersection set becomes too small. Alternative approaches
have to be developed. For example, LASSO (least absolute
shrinkage and selection operator)-type methods can be used
to select probes from the union sets. Development of a
method for constructing a common set from the family spe-
cific modules is a topic for future research.
Finally more research is needed to evaluate the per-

formance of our method with regard to false-positive
and false-negative findings in relationship to heterogen-
eity, family size, the number of families, and the herit-
ability of gene expressions.
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