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Abstract

We present a novel approach to detect potential cis-acting regulatory loci that combines the functional potential,
an empirical DNase-seq based estimate of the allele-specificity of DNase-I hypersensitivity sites, with kernel-based
variance component association analyses against expression phenotypes. To test our method we used public
ENCODE whole genome DNase-I sequencing data, from a single sample, to estimate the functional potentials
of the subset of 10,552 noncoding heterozygous single-nucleotide polymorphisms (SNPs) that were also present in the
Genetic Analysis Workshop 19 (GAW19) family-based data set. We then built two covariance kernels, one nonweighted
and one weighted by the functional potentials, and conducted kernel-based variance component association analyses
against the 20,527 transcript expression phenotypes in the GAW19 family-based data set. We found signals of potential
cis-regulatory effects, that surpassed the Bonferroni significance threshold, for ten transcripts. Stepwise removal of the
cis-located SNPs from the weighted kernel lead to the disappearance of the association signal from our top transcript
hit. We found compelling evidence of allele-specific cis-regulation for four transcripts using both kernels, and
our results agree with previous research that suggests the involvement of specific cis-located variants in the
regulation of their neighboring gene.
Background
Variation found in noncoding regions of the genome is
much more abundant and, perhaps, even more relevant
than coding variation for certain human traits, but its
biological meaning is hard to assess [1]. It has been no-
ticed that between 34 and 88 % of the disease-associated
variants detected by genome-wide association studies
(GWAS) appear to cluster in noncoding regions of the
genome, specifically in DNase-I hypersensitivity sites
(DHSs) [2], and that some of the DHSs exhibit allele-
specificity [2–4]. Chromatin remodeling processes, for
example those associated with the transcription
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machinery, create openings in the chromatin, which
can be detected as DHSs, that allow transcription fac-
tors to interact with the underlying DNA. Hence
DHSs tend to correlate with known cis-acting regula-
tory elements, such as promoters and transcription
factor binding sites [5].
We have been investigating a systematic approach that

uses DHSs to determine if noncoding single-nucleotide
variation changes the local allele-specific chromatin ac-
cessibility, something that would indicate a potential
regulatory role for a variant [6]. We have also developed
a variance component based burden test to determine
the contribution of localized relationship kernels to the
trait variance [7, 8]. Here, we test if by combining both
lines of research we could detect potential cis-acting
regulatory loci. Our approach differs from previous
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works [4, 9] in that (a) we evaluate the association of
each expression phenotype against a single covariance
kernel, in a 1 degree of freedom test, and (b) we use an
allele-specific chromatin accessibility measure to filter
and weight the variants.
Methods
Data set
We used single-nucleotide polymorphism (SNP) dosages
from 959 genotyped individuals, transcript expression
levels from 647 of those individuals, and the genealogies
(1389 individuals in 20 families) that were provided as
part of the Genetic Analysis Workshop 19 (GAW19)
family-based data set [10]. In addition, we used publicly
available data from a CEU-CEPH (Northern Europeans
from Utah–Centre d’Etude du Polymorphisme Humain)
female’s peripheral blood mononucleated cells, NA12878,
and its derived lymphoblastoid cell line, GM12878. The
specific data used were: whole genome sequencing (WGS)
genotypes for NA12878, from Illumina’s Platinum Ge-
nomes [11], and mapped short-sequencing reads (reads)
from all five replicates of the DHSs sequencing (DNase-
seq) of GM12878, from ENCODE [12], were used in this
study. Physical coordinates and annotations for genes,
transcripts, and marker loci refer to release 19 of the hu-
man genome (hg19) from the University of California,
Santa Cruz (UCSC).
Reference panel of heterozygous single-nucleotide
polymorphism loci
We compiled a reference panel of heterozygous SNP
sites from the genotype calls from the high-coverage/
high-quality WGS of NA12878. This independent geno-
types source allowed us to analyze heterozygous loci
where, because of either low coverage or complete
allele-specific accessibility, only 1 allele is represented in
the DNase-seq reads.
Chromatin accessibility measurement
We defined our chromatin accessibility measure to be
equal to the DNase-seq read depth of each allele at a
heterozygous locus. Based on our previous experience
[6] the DNase-seq reads from all five GM12878 repli-
cates were pooled to increase the total sequencing cover-
age at the DHSs. Samtools [13] mpileup was then used
to obtain genotype calls only for loci in the known
NA12878 heterozygous reference panel, and allele-
specific read depths were obtained from the count of
forward and reverse mapped reference and alternative
allele annotations stored in the DP4 tag of the generated
variant call format (VCF) file.
Functional potential
A departure from the expectation of an equal chromatin
accessibility measurement of the two alleles at a locus
within a DHS is what we refer to as the locus functional
potential (FP). We implemented the FP statistic as a
likelihood ratio–based test that contrasts the observed
allele read depths with their expected depth at known
heterozygous loci within DHSs [6]. A significant bias
toward 1 allele in the chromatin accessibility measure
of a locus can indicate a putative allele-specific chro-
matin remodeling event that compromised the foot-
print left by a DHS. We estimated the FP for all
known NA12878 heterozygous loci that were present
in the DNase-seq of GM12878.

Trait and covariates
To test our approach we used the real expression pheno-
types from approximately 20,000 transcripts provided in
the GAW19 family data set [10]. In addition, we sim-
ulated 10,000 heritable quantitative phenotypes not
associated with any of the SNP loci in the data set,
using Sequential Oligogenic Linkage Analysis Routines
(SOLAR) [14], to evaluate the performance of our test
under a null hypothesis.
We also used the sex, age, their interactions, and the

smoking status at the first visit as covariates in all
models. The first two principal components (PC1, PC2)
(estimated as described in Peralta et al. [7] and Almeida
et al. [8]), were added to account for any unknown
population substructure that might be present.

Covariance kernels
GAW19 SNP dosages were collected for all heterozygous
loci from NA12878 with a FP estimate. Non informative
loci were removed. A standardized dosages matrix, Z,
was built from them, and the covariance matrix of the
dosages, R, was obtained from

R ¼ Z⋅ZT

The covariance matrix was then scaled so that all diag-
onal elements were equal to 1, and the resulting matrix,
K, was our nonweighted covariance kernel.
We also built a covariance kernel in which each locus

contribution was weighted by its FP estimate. Because
our FP statistic is a likelihood ratio test, we used the
relative − loglikelihood from a locus against the sum of
all loci − loglikelihoods as the locus weight, and thus all
weights add up to 1. The covariance kernel, K, was con-
structed as before, with 1 exception. The covariance
matrix of the dosages was obtained from

R ¼ Z⋅Dw⋅ZT

where Dw is a diagonal matrix of weights.



Fig. 1 Quantile–quantile (Q-Q) plot of the p values obtained under a
null hypothesis test. Analysis of 10,000 simulated phenotypes not
associated with any of the GAW19 SNP loci. The obtained the p values
follow the expected uniform distribution
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Variance component model
We used the variance component model previously
described in Peralta et al. [7] and Almeida et al. [8],
in conjunction with the nonweighted and FP-weighted
covariance kernels derived from the SNP dosages de-
scribed above, to estimate the proportion of the
phenotypic variance, hgeff

2 , explained by allele-specific
genetic variants found within DHSs in an unrelated
CEU-CEPH individual. The hgeff

2 variance component,
and its significance, was estimated for each real and
simulated expression phenotype using SOLAR, a flex-
ible genetic variance component analysis program
with a focus on general pedigrees [14].

Results
Our reference panel of heterozygous loci contained the
2,423,308 heterozygous SNPs that had been found in the
WGS of NA12878. Only heterozygous loci are inform-
ative for allele-specific chromatin accessibility in a gen-
ome. Although heterozygous SNP sites can be directly
inferred from DNase-seq data, it is not ideal, in part be-
cause of its very low coverage.
We were able to measure the allele-specific chromatin

accessibility and estimate the FP for 48,236 (1.99 %) of
those heterozygous SNPs but only 10,618 (22 %) of them
were present in the GAW19 dosages. Of the 10,618
heterozygous-in-NA12878 SNPs with a FP estimation
that were present in GAW19, 66 (0.62 %) were mono-
morphic in the GAW19 dosages and were therefore dis-
carded from further analysis. The remaining 10552 SNPs
with FP estimates were used for the construction of our
weighted and nonweighted covariance kernels.
We conducted our variance component analysis of

10,000 simulated phenotypes using the weighted covari-
ance kernel only and found no inflation or deflation of
the p values of the estimated effects (Fig. 1), indicating
that our test performed as expected when evaluated
under the null hypothesis. Figure 2 shows the frequency
distribution of the weights.
We then analyzed the 20,527 transcript expression

phenotypes in the GAW19 family data set using both
the weighted and the nonweighted covariance kernels.
After a genome-wide Bonferroni correction (−log10[α]
= 5.6) we found significant evidence of potential cis-
regulatory effects for ten transcripts (Table 1). Eight
of the transcripts were detected by both covariance
kernels but two of them, GI_4506738-S and
GI_15451941-S, were only found to be significant
when the weighted covariance kernel was used. In
most of the cases, the use of the nonweighted covari-
ance kernel tended to slightly decrease the proportion
of the transcript expression variance explained by the
kernel, which was on average very high in both cases
(hgeff,non − weighted

2 = 0.6540, hgeff, weighted
2 = 0.7046). While
most of the trait heritability was explained by the co-
variance kernel, a substantial amount (between 14
and 28 %) still remained. Table 2 lists these ten tran-
scripts along with their annotations and closest SNPs
in the covariance kernels. Table 3 shows how the sig-
nal from our top result, GI_42544126-I, decreases
when SNPs within the transcript region are progres-
sively removed from the kernel.
Discussion
The objective of this study was to investigate the
prioritization of SNPs based on their potential as
functional, cis-acting, regulatory elements. To that
end we used a combined approach that integrates
functional information, in the form of allele-specific
chromatin accessibility measurements at DHSs, gene
expression phenotypes, and a variance component
model that estimates the proportion of a trait’s vari-
ance as a result of a localized relationship kernel.
We constructed nonweighted and weighted covariance

kernels, using the 10,552 SNPs with an available FP esti-
mate, and obtained the proportion of variance in the
levels of transcript expression that could be explained by
them in the family data set. We identified a clear signal
for eight transcripts when using the nonweighted kernel,
and for two additional transcripts when using the
weighted kernel (see Table 1). In contrast, we found no
signals when we performed our analysis using the set of
10,000 simulated phenotypes; an indication that our test



Fig. 2 Frequency distribution of the weights used for variants in the weighted covariance kernel. Each weight represents the relative proportion
of the functional potential − loglikelihood estimation of each variant in the kernel. The large proportion of variants in the first bin have a very
small weight, and correspond to variants with a low confidence of having an allele-specific chromatin accessibility effect
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statistic was not artificially inflated when evaluated
under the null hypothesis (see Fig. 1).
Some of our results are difficult to interpret because of

the distance between the transcript location and the
closest SNPs to it in our kernels. For transcripts
GI_12056480-A and GI_15451941-S our results might
indicate the presence of long-acting cis-elements, but
could also be the result of, for example, linkage disequi-
librium with SNPs in closer proximity to the transcript.
However, close examination of the annotations of the

significant transcripts in our results shows suggestive
Table 1 Transcripts for whom their variation in expression levels can
estimates, at genome-wide significance

Transcript Covariance kernel

Non-weighted

h2r h2r_p geff ge

GI_42544126-I 0.0000 0.5000 0.7074 4.0

GI_23097237-S 0.0000 0.5000 0.7848 1.1

GI_10863968-S 0.0000 0.5000 0.6109 5.6

Hs.283934-S 0.0746 0.3138 0.8382 9.7

GI_12056480-A 0.2357 0.0457 0.7069 1.6

GI_20986517-S 0.0000 0.5000 0.7671 5.5

Hs.58104-S 0.2230 0.0753 0.6886 6.8

GI_41393558-I 0.0000 0.5000 0.5331 1.9

GI_4506738-S NA

GI_15451941-S NA

geff, Gene-specific effect estimate (h2geff)
geff_p, significance of the gene-specific effect estimate
h2r, trait heritability estimate (h2)
h2r_p, significance of the trait heritability estimate
evidence of potential cis-acting variants. Particularly
for the GI_23097237-S, GI_42544126-I, GI_4506738-S,
and GI_41393558-I transcripts, corresponding to the
CHST13, SF1, RP56KB2, and KIF1B genes, respectively.
The SNPs with FP estimates that we incorporated in our
covariance kernel near these genes are all located either
within the gene or within the promoter region of the gene
(see Table 2). The progressive removal of SNPs within and
near the SF1 gene led to the degradation of the signal
from the GI_42544126-I transcript (see Table 3), clearly
suggesting a cis-acting effect of the variants in the
be explained by a covariance kernel composed by SNP with FP

Weighted

ff_p h2r h2r_p Geff geff_p

3E-15 0.0000 0.5000 0.7145 4.55E-18

5E-14 0.0000 0.5000 0.7493 7.46E-12

8E-10 0.0000 0.5000 0.6122 9.05E-11

7E-10 0.1497 0.1443 0.7657 4.87E-09

9E-08 0.2792 0.0194 0.6628 5.43E-08

8E-08 0.0000 0.5000 0.7726 3.08E-08

9E-07 0.2705 0.0333 0.6415 8.47E-07

2E-06 0.0000 0.5000 0.5371 1.73E-06

0.0000 0.5000 0.4758 6.66E-07

0.2611 0.0441 0.6090 1.33E-06



Table 2 Annotated transcript and SNP table

Transcript Gene Chromosome Start Length SNP DBSnp rs SNP annotation

GI_42544126-I SF1 chr11 64532075 14241 11_64511322 rs2073798 RASGRP2 intron

11_64519345 rs686171 PYGM intron

11_64546106 rs3741398 SF1 2 kb upstream, nc transcript variant, 5’ UTR

11_64546257 rs1633462 SF1 2 kb upstream, nc transcript variant, 5’ UTR

11_64573589 rs669976 MEN1 intron

11_64576598 rs67808744 MEN1 intron

11_64577620 rs7949944 MEN1 5’ UTR, 2 kb upstream

GI_23097237-S CHST13 chr3 126243130 19004 3_126218788 rs6774768 UROC1 intron

3_126228953 rs1873388 UROC1 intron

3_126242964 rs1388096 CHST13 2 kb upstream

3_126245956 rs4592980 CHST13 intron/3’UTR

3_126246370 rs1994642 CHST13 intron/3’UTR

3_126247795 rs11717719 CHST13 intron

3_126247848 rs11718493 CHST13 intron

GI_10863968-S POLD4 chr11 67119018 2034 11_67196237 rs1476792

Hs.283934-S TSPAN16 chr19 11406815 30857 19_11340057 rs17001244

19_11358700 rs4804579

19_11374675 rs416231

19_11380295 rs4804159

19_11406952 rs374409

GI_12056480-A UTS2 chr1 7907271 6280 1_7710810 rs58905635 CAMTA1 intron

1_7725855 rs4908471 CAMTA1 intron

1_7749807 rs3124797 CAMTA1 intron

GI_20986517-S MAPK8IP1 chr11 45907046 20970 11_45838926 rs11038668

11_45840939 rs7112505

11_45891418 rs7123390 CRY2 intron

Hs.58104-S FAM101B chr17 289771 8960 17_185027 rs12951437

17_198698 rs11869174

17_206962 rs11657163

GI_41393558-I KIF1B chr1 10270763 97892 1_10270386 rs3828081 KIF1B 2 kb upstream

1_10307453 rs4240911 KIF1B intron

1_10438687 rs1536262 KIF1B 3’UTR

GI_4506738-S RPS6KB2 chr11 67195934 6945 11_67196237 rs1476792 RPS6KB2 intron

11_67204342 rs12787021 PTPRCAP intron

11_67213956 rs2109123

11_67253564 rs7110021

11_67258805 rs751567

11_67264679 rs2276120

GI_15451941-S UBA52 chr19 18682613 5657 19_18499151 rs1059022

19_18499238 rs1804826

19_18715154 rs72995445 CRLF1 intron

19_18859680 rs11085244

Gene symbols and coordinates for the ten transcripts that were detected as being potentially cis-regulated by SNPs in our covariance kernel. The closest SNPs to
each gene are listed
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Table 3 Decrease in the association signal when cis-located
SNPs are removed from the kernel

Transcript Gene SNPs removed
from the kernel

Covariance kernel

Weighted

h2r geff geff_p

none 0.0000 0.7145 4.55E-18

GI_42544126-I SF1 2 in SF1 0.0000 0.6809 1.32E-12

all in transcript region 0.1349 0.1349 2.00E-05
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transcript expression. Furthermore, previous research
provides additional compelling evidence for the impli-
cation of rs11718493 in the allele-specific methylation
of CpGs and the regulation of CHST13 [15, 16], a
carbohydrate sulfotransferase that is present in the
Golgi membrane [17], and rs1536262 has been re-
ported to be a likely candidate for the regulation of
KIF1B expression [18].
Conclusions
Our kernel-based variance component test was able to
prioritize noncoding variation from whole-genome se-
quencing data based on their potential to regulate gene
expression. An allele-specific chromatin accessibility
measure was used as both a biologically meaningful filter
for the selection of the variants and the weight of each
variant in the covariance kernel. We observed compel-
ling evidence to support the idea that four genes might
be cis-regulated by the SNPs we identified in them.
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