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Abstract

Background: The Genetic Analysis Workshops (GAW) are a forum for development, testing, and comparison of
statistical genetic methods and software. Each contribution to the workshop includes an application to a specified
data set. Here we describe the data distributed for GAW19, which focused on analysis of human genomic and
transcriptomic data.

Methods: GAW19 data were donated by the T2D-GENES Consortium and the San Antonio Family Heart Study and
included whole genome and exome sequences for odd-numbered autosomes, measures of gene expression,
systolic and diastolic blood pressures, and related covariates in two Mexican American samples. These two
samples were a collection of 20 large families with whole genome sequence and transcriptomic data and a
set of 1943 unrelated individuals with exome sequence. For each sample, simulated phenotypes were constructed
based on the real sequence data. ‘Functional’ genes and variants for the simulations were chosen based on observed
correlations between gene expression and blood pressure. The simulations focused primarily on additive genetic
models but also included a genotype-by-medication interaction. A total of 245 genes were designated as ‘functional’
in the simulations with a few genes of large effect and most genes explaining < 1 % of the trait variation. An additional
phenotype, Q1, was simulated to be correlated among related individuals, based on theoretical or empirical kinship
matrices, but was not associated with any sequence variants. Two hundred replicates of the phenotypes were
simulated. The GAW19 data are an expansion of the data used at GAW18, which included the family-based
whole genome sequence, blood pressure, and simulated phenotypes, but not the gene expression data or
the set of 1943 unrelated individuals with exome sequence.
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Background
Genetic Analysis Workshop 19 (GAW19) concentrated
on approaches to identify and characterize loci and
genetic variants influencing quantitative and complex
phenotypes through analysis of genome sequence and
gene expression levels. Data distributed for the work-
shop included whole genome sequence (WGS) and
gene expression in 959 individuals in a set of 20
Mexican American families [1] and whole exome se-
quence in a set of 1943 unrelated Mexican American
individuals drawn from a larger multi-ethnic case/
control study [2]. The genotype calls provided for
odd-numbered autosomes previously underwent qual-
ity control screening and were pre-cleaned. Both real
and simulated phenotype data were provided. The real
phenotypes concentrated on systolic and diastolic
blood pressure and related covariates, including age,
year of examination, use of antihypertensive medica-
tions, and tobacco smoking. Simulated phenotypes
were designed to mimic various aspects of these real
phenotypes, including the distribution of the quantita-
tive traits, overall heritabilities, and correlations be-
tween traits. Both real and simulated phenotypic data
from the family sample were longitudinal, with up to
four time points in the real data and three time
points in the simulated data. The unrelated data set
was cross- sectional, with a single time point available
in both the real and simulated data sets.

Methods
Whole genome sequence in families
The family data set distributed for GAW19 is an ex-
panded version of that used for GAW18, which has been
previously described in detail [1]. We provide here only
a brief summary of this data set. The core of the family
data set was WGS data for 464 individuals in 20 large
Mexican American families drawn from Type 2 Diabetes
Genetic Exploration by Next-generation sequencing in
multi-Ethnic Samples (T2D-GENES) Project 2, and mea-
sures of systolic and diastolic blood pressure. Called
WGS variants were available for 464 key individuals.
These individuals were selected to provide comprehen-
sive data on all alleles present in a pedigree and their
phase, with two parents and one child per sibship se-
quenced when possible or multiple children sequenced
when one or more parents was unavailable. Genotypes
were imputed for the remaining 495 family members
based on a genome-wide association study (GWAS)
framework of dense SNPs genotyped in all family mem-
bers. Directly typed or imputed WGS data for odd num-
bered autosomes were provided for 959 individuals in
these 20 families. Systolic and diastolic blood pressures
were measured at up to four time points over a span of
20 years, and were available for 932 of the 959 family
members. Three or more measures were available for
503 individuals (52.5 %) and 686 individuals (73 %) had
at least two measurements. Hypertension was defined as
systolic blood pressure (SBP) > 140, diastolic blood pres-
sure (DBP) > 90, and/or use of antihypertensive medica-
tions at that examination. The prevalence of hypertension
varied from 18 % at the first exam to 52 % at the fourth
exam as the cohort aged. Accompanying covariate data
included sex, age at examination, year of examination,
current use of antihypertensive medication, and current
tobacco use. Year of examination was provided to allow
for examination of temporal trends as the examinations
spanned a 20-year period.

Gene expression in the family data set
For GAW19, the GAW18 family data set was expanded
with the addition of genome-wide gene expression mea-
sures in a subset of the T2D-GENES WGS families drawn
from the San Antonio Family Heart Study (SAFHS). Mea-
sures of gene expression were generated using version 1 of
Illumina Sentrix Human Whole Genome (WG-6) mi-
croarrays containing 47,293 probes in total. The SAFHS
transcript data set is described in G ring et al. [3] and
details of laboratory procedures can be found there.
However, the GAW19 data set was constructed using a
somewhat different analytical processing pipeline than
that described previously.
Briefly, gene expression data were generated from per-

ipheral blood mononuclear cells (PBMCs) from 1,371
samples in total (including controls of various types and
duplicate samples). Based on the per-sample number of
probes with significantly detectable expression level
(counts of reported “detection p-values” of less than or
equal to 0.05 across all probes), the mean raw expression
level (reported “average signals”) across all probes, and
the mean correlation of any sample against all other
samples (in the reported “average signals” of all probes),
1244 unique samples (out of 1280 in total) were identi-
fied as yielding expression data of adequate quality and
were kept for further processing. Of these 1244 high
quality samples, 647 come from individuals in the 20
T2D-GENES WGS families and were included in the
GAW19 family data set.
Among these samples, we tested separately for each

probe whether there was significant detectable expres-
sion, by conducting a binomial test based on counts of
samples with and without reported “detection p-values”
of less than or equal to 0.05. Subsequently, we calculated
the false discovery rate (FDR) across all probes. A total
of 20634 transcripts were significant at a FDR of 0.05
and were kept for further processing. Subsequently, we
shifted all “average signals” upwards so that the observed
minimum value (in any probe in any sample) was 1.0,
conducted a log2 transformation followed by a quantile
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normalization transformation. The resulting data were
distributed for GAW19.

Exome data in unrelated individuals
The second data set distributed for GAW19 was a large
sample of unrelated Mexican American individuals
drawn from T2D-GENES Project 1 [2]. Overall, this pro-
ject included 10,000 whole exome sequences from five
ancestry groups, with approximately 1000 cases with
T2D and 1000 controls from each group. This project
was designed to study the role of uncommon variation
and to identify potential functional variants behind pre-
viously identified GWAS signals.
The GAW19 exome data set included 1,943 Hispanic

samples whole‐exome sequenced as part of T2D‐GENES
Project 1. These samples were drawn from five separate
family-based studies, the San Antonio Family Heart
Study [4], the San Antonio Family Diabetes/Gallbladder
Study [5], the Veterans Administration Genetic Epidemi-
ology Study [6], the Family Investigation of Nephropathy
and Diabetes study family component [7], and a study
from Starr County, Texas [8, 9]. Approximately 75 % of
the sample of unrelated individuals came from the
Starr County study. The 1943 individuals include
1021 with T2D and 922 non-diabetic controls. Infor-
mation on T2D diagnosis was not provided as part of
the GAW19 data set.
Phenotypic data provided included year of examination,

SBP, DBP, and use of anti-hypertension medication; how-
ever, some of these variables were only available from a
subset of the studies in the data set. Year of examination
was available for 409 individuals and ranged from 1991
to 2012. Use of anti-hypertensive medications was
available for 407 individuals, of whom 147 were on
such medications and 260 were not. A total of 1851 in-
dividuals had measurements of systolic and diastolic
blood pressure. SBP ranged from 66–213, with a mean
of 125. DBP ranged from 32–123, with a mean of 73.5.
These values are similar to those in the GAW19 family
data set, where mean SBP was 122–128 across the four
examinations and mean DBP was 71–78. Data on nico-
tine use, provided for the GAW19 family sample, were
not available for the exome sample.
Exomic regions were isolated using Agilent Truseq

capture reagents, and individually‐barcoded samples
were sequenced on Illumina HiSeq2000 instruments.
Across the coding sequence of 18,281 genes the average
read depth was 81.7‐fold. Sequence reads were processed
and aligned to the reference genome (hg19) with Picard
(http://broadinstitute.github.io/picard/). Polymorphic sites
and genotypes were called with GATK [10].
Samples and variants were excluded on the basis of mul-

tiple quality control metrics: array genotype concordance
(where available), mean heterozygosity and homozygosity,
high singleton counts for samples, Variant Quality Score
Recalibration (VSQR) for single nucleotide variants
(SNVs), and hard filtering for small insertion-deletion
variants (INDELs). Within each ethnicity in the overall
T2D-GENES Project 1 data set, variants were excluded on
the basis of call rate (<90 % in any study in ancestry
group), deviation from Hardy‐Weinberg equilibrium (exact
p < 10−6 in any study in ancestry group) or differential call
rate between T2D cases and controls (p < 10−4 in all stud-
ies combined across ancestry group). Autosomal variants
that passed extended QC and with MAF > 1 % in all ances-
try groups were used for trans‐ethnic kinship analyses.
Identity‐by‐state (IBS) sharing between each pair of
samples was calculated on the basis of independent var-
iants (trans‐ethnic r2 < 0.05) and axes of genetic vari-
ation were constructed through principal components
analysis implemented in EIGENSTRAT [11] to identify
ethnic outliers. Only individuals in the Mexican American
subset of T2D-GENES Project 1 were included in the
GAW19 exome data set.
For GAW19, variant call format (VCF) files were pro-

vided for odd‐numbered autosomes. These included
genotype calls in the NALTT field, which contained only
high quality (GQ > 20) genotypes scored as 0/1/2, geno-
types subjected to only minimal quality control in the
GT field, and likeihood-based estimates of allele dosages
in the DOS field. These VCF files included 1,689,048
SNVs (some of which were multiallelic) and 76,397 INDEL
variants. Because the Mexican American exome data set
provided for GAW19 was drawn from T2D-GENES’
larger multi-ethnic case/control sample, some markers
included in the GAW19 exome data were mono-
morphic as they varied in the overall T2D-GENES
sample but not in the Mexican American subset. Con-
sidering only SNVs with at least five observed copies of
the minor allele, which might be individually analyzed,
Table 1 shows the distribution of these variants across
annotation categories in the unrelated exome sample
and in the family WGS sample. In general, although
the family sample had fewer individuals sequenced,
there were more variants present in five or more copies
in each annotation category. Some general patterns are
similar across the unrelated exome and family WGS
data sets, with 51 % of coding variants in each case
being non-synonymous and with the proportion of
SNVs with minor alleles frequencies < = 1 % increasing
when moving from coding variants to non-synonymous
variants to variants rated as highly deleterious by
PolyPhen-2 [12].
Although the exome sample was intended to be unre-

lated individuals, analysis of the SNV-based kinship esti-
mates among individuals in the GAW19 unrelated data
set shows that there are a few relative pairs present in
the sample. While most of these relationships are third

http://broadinstitute.github.io/picard/


Table 1 Variant annotation, by minor allele frequency category, for variants present in at least 5 copies in the unrelated exome
sample and in the family WGS sample

Sample Variant type 0.1 < MAFa≤ 0.5 0.01 < MAF≤ 0.1 MAF≤ 0.01

Unrelated exome sample Coding All coding 5956 6878 13776

Synonymous 3240 3329 6159

Non-synonymous 2647 3450 7389

Highly Deleterious 340 833 1979

Non-coding 5′ UTRb 165 170 361

3′ UTR 309 335 588

Family WGS sample Coding All coding 15270 16412 23872

Synonymous 8089 7743 10061

Non-synonymous 6828 8275 13180

Highly Deleterious 549 1159 1996

Non-coding 5′ UTR 3142 3057 4093

3′ UTR 16628 16688 21885
aMAF minor allele frequency. bUTR untranslated region
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degree or more distant, a few first- or second-degree
relative pairs are present in the GAW19 exome sample.

Simulated phenotypes
A set of simulated phenotypes was constructed using the
same model in both the exome and family data sets to
closely match the observed phenotypic data. Simulated
SBP and DBP had the same mean, variance, heritability
and correlations with each other as observed in the real
data. The observed data were also used to model covari-
ate effects, with blood pressures being higher in males
than females and increasing with age. A total of 200 rep-
licates of the simulated phenotypes were generated. For
the WGS family data set, phenotypes were simulated
longitudinally, at three time points at 5-year intervals.
Genetic parameters remained the same across all three
exams and random environmental components were
given a correlational structure based on that seen in the
real data. In the exome data set of unrelated individuals,
simulated SBP and DBP were modeled for a single time
point, with the same mean, variance, age, sex, and medi-
cation effects as in the family sample. The age and sex
of each individual were drawn from the real data and
did not vary across the 200 simulation replicates that
were generated.
‘Functional’ genes for the simulation were selected

based on correlations of gene expression with measures
of SBP and DBP in the SAFHS. To meet inclusion cri-
teria, a gene’s expression levels in the SAFHS had to be
both phenotypically and genetically correlated with ob-
served SAFHS SBP or DBP. Within these selected genes,
non-coding variants within 5 kb upstream and down-
stream of the gene that were associated with expression
levels of that gene were declared ‘functional’ for the
simulations as were coding variants predicted by
PolyPhen-2 [12] to be deleterious. Effect sizes in the
simulation for each SNP were determined using the ob-
served correlation between mRNA levels and blood
pressure in the SAFHS for the non-coding variants and
using a function of PolyPhen-2 score (PP2S) for the cod-
ing variants:

percentile of ranked PP2Sð Þ� PP2S2
� �� ρg � k � l

where ρg is the genetic correlation between mRNA
levels and SBP or DBP, k is an overall constant, and l is
a gene-specific constant.
There were 245 genes selected to influence simulated

SBP and/or DBP. In the family data set, these 245 genes
contained 1458 functional variants whose effect sizes
ranged from < 0.001 to 2.78 % of the total phenotypic
variance. The gene with the largest effect, MAP4 on
chromosome 3, accounted for 7.79 % of phenotypic vari-
ance in simulated SBP and 6.48 % in simulated DBP
when effects of all ‘functional’ variants within and flank-
ing the gene were combined. A list of the functional var-
iants with the largest effect sizes in the family data set is
available in the GAW18 data description [1].
The variants designated as ‘functional’ for phenotype

simulations in the GAW19 exome data set differ slightly
from those in the family data set, due to non-coding var-
iants present in the WGS but not covered by the exome
sequencing and due to new coding variants present in
the larger set of unrelated individuals in the exome data
set that had not been represented in the smaller family
data set. The 245 ‘functional’ genes used in simulating
phenotypes for the family data set were screened for
new non-synonymous coding variants present in the
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unrelated exome data set and new variants were
assigned effect sizes by the same formula, as a function
of their PolyPhen-2 scores. This resulted in a total of
1730 functional variants in the exome data set. The 20
variants with the largest effect sizes in the exome sample
are shown in Table 2. All are non-synonymous coding
variants. Effect sizes were somewhat larger for the
GAW19 exome simulation than for the simulations in
the family data set. The MAP4 variant with the largest
effect in the families, is only the fourth largest effect in
the unrelated exome simulation.
In simulations in the family data set, frequency of

simulated anithyptertensive medication usage was
modeled on the observed data. Simulated SBP and
DBP were each reduced by treatment, except in indi-
viduals carrying deleterious variants in the CYP3A43
gene, producing a genotype-by-medication interaction
effect. In the exome data set, because only a subset of
individuals had information available on medication
usage, medication status was randomly assigned, vary-
ing across replicates, and was based on the proportion
of participants on antihypertensive medications in
exam 1 in the family sample.
In addition to the measured genetic effects generated

from the sequence data, an aggregate, unspecified
Table 2 Top 20 variants influencing simulated SBP and DBP in th
variance explained

Chromosome Position (bp) Gene Frequency of non-reference allele Bet

3 47956424 MAP4 0.34354

1 175092674 TNN 0.64771

1 66075952 LEPR 0.15466

3 48040283 MAP4 0.02805

3 47957996 MAP4 0.02290

1 151501841 CGN 0.10396

13 28624294 FLT3 0.61400

3 48040284 MAP4 0.00695

1 175092637 TNN 0.02007

1 151491026 CGN 0.02084

1 175046835 TNN 0.01390

3 47908815 MAP4 0.00257

11 77937768 GAB2 0.00386

1 175046652 TNN 0.00824

9 123605126 PSMD5 0.18837

3 58109162 FLNB 0.45677

1 151503071 CGN 0.01132

1 175054626 TNN 0.00566

1 53712727 LRP8 0.21410

19 46812451 HIF3A 0.03886
aBeta = change in mean phenotype value per non-reference allele carried
additive genetic residual was modeled based on
pedigree-derived kinship estimates in the family data set
and on empirical kinship estimates among all pairs of in-
dividuals estimated using the program LDAK [13] in the
exome data set. This residual additive genetic correlation
was set to maintain the heritabilities of simulated SBP
and DBP and the genetic correlations between them as
observed in exam 1 of the family data set.
Pedigree-derived and empirical kinship estimates also

were used to simulate a phenotype called Q1 that had a
heritability of 68 % but was independent of the WGS or
exome sequence variants. Q1 was simulated as a nor-
mally distributed quantitative trait and was designed pri-
marily for testing of type I error. Only a single time
point was simulated for 200 replicates of Q1 in both the
family and exome data sets.

Conclusions
The GAW19 data provide a broad range of analytical
possibilities, including both genomic and transcriptomic
data; both family and unrelated cohort data sets; both
real and simulated phenotypes; and both longitudinal
and cross sectional data sets. At the workshop, investiga-
tors used these data to address a wide variety of topics.
Analytical issues addressed included methods for
e GAW20 unrelated exome sample, in decreasing order of

aa DBP Betaa SBP DBP variance explained (%) SBP variance explained (%)

−3.93 −6.09 7.88 7.01

3.38 4.10 5.89 3.20

3.49 3.78 3.61 1.56

−5.03 −7.80 1.56 1.39

−4.41 −6.84 0.98 0.87

−2.63 0 1.46 0

1.40 1.44 1.05 0.41

−5.05 −7.83 0.40 0.36

3.38 4.10 0.51 0.28

−2.88 0 0.38 0

2.88 3.49 0.26 0.14

−4.99 −7.73 0.15 0.13

0 6.04 0 0.12

3.35 4.06 0.20 0.11

−0.58 −0.89 0.11 0.10

0.13 0.64 0.01 0.08

−2.88 0 0.21 0

3.30 4.00 0.14 0.08

0 −0.71 0 0.07

1.36 0.92 0.16 0.03
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population- [14] and family-based [15] association, ma-
chine learning and data mining approaches to gene
localization [16], and methods for joint analysis of muti-
ple phenotypes [17]. Some groups concentrated on ap-
proaches to dealing with multiple testing in these high
dimensional sequence data by filtering sequence variants
or placing informative priors for association analyses [18],
by pathway-based approaches for gene localization [19],
or by other variant collapsing approaches [20]. Other con-
tributions focused on utilizing unique aspects of the
GAW19 family data set, including genetic analyses of lon-
gitudinal data [21], and analysis of gene expression data
[22]. The variety of topics addressed in these GAW19
contributions illustrate the utility and versatility of the
GAW19 data. As many genetic studies of complex human
phenotypes are currently focusing on exome and whole
genome sequence, and their integration with gene expres-
sion data, we anticipate that the GAW19 data will con-
tinue to provide a rich resource for statistical genetic
methods development, comparison, and testing for years
to come.
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