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Abstract

As the availability of cost-effective high-throughput sequencing technology increases, genetic research is beginning
to focus on identifying the contributions of rare variants (RVs) to complex traits. Using RVs to detect associated
genes requires statistical approaches that mitigate the lack of power with the analysis of single RVs. Here we report
the development and application of an approach that aggregates and evaluates the transmissions of RVs in parent-
child trios. An initial score that incorporates the distortion in transmission of the observed RVs from the parents to
their offspring is calculated for each variant. The scores are analyzed using a support vector machine that handles
these data by mapping the transmission distortion of the multiple RVs into a one-dimensional score in a nonlinear
fashion when parent-child trios with affected and nonaffected children are contrasted. We refer to this approach as
Trio-SVM. A total of 275 trios were available in the Genetic Analysis Workshop 18 data for analysis. Because of their
nonindependence and the extended linkage disequilibrium (LD) within pedigrees, Trio-SVM was vulnerable to type
I errors in detecting association. Using the GAW18 data with simulated trait values, Trio-SVM has an appropriate
type I error, but it lacks power with a sample of 267 trios. Larger samples of 500 to 1000 trios, derived from
combining the simulated data, provided sufficient power. Two chromosome 3 candidate genes were tested in the
real GAW18 data with Trio-SVM, and they showed marginal associations with hypertension.

Background
Genome-wide association studies (GWAS) of common
variants have not explained the heritability estimates of
common complex disorders [1]. In response, exome
sequencing, which is designed to reveal rare variants
(RVs) with a frequency less than a value in the range of
1% to 5%, is being applied to pursue additional risk
genes. Interpretation of RVs is best done for Mendelian
disorders within pedigrees to identify significant loci and
avoid artifacts of the sequencing process. However, for
complex disorders and quantitative traits, RVs that segre-
gate only within a few pedigrees do not provide adequate
statistical power to implicate a particular gene when they
are analyzed alone. Approaches to solve this problem
involve the aggregation of RVs within genes and regions.
We developed an approach, called Trio-SVM, using the

support vector machine (SVM) method that aggregates
and tests the RVs of a gene for a dichotomized trait in
parent-child trios [2]. Parent-child trios are used to test
association through distortions in transmission from the
parents to their children. An advantage of this approach
is that (a) the transmission of RVs can be aggregated
across genes and compared with their aggregation in
controls by the SVM, and (b) population stratification is
mitigated because only parents with the RV provide
information in the analysis. That is, the differences in fre-
quencies of RVs in different ethnic groups will have no
effect on the test statistic because only opportunities for
transmission in parents heterozygous for RVs contribute
to the transmission distortion data used by the SVM.
Using Trio-SVM, all members of the trios are sequenced

for RVs, and the observed RV transmissions are compared
with what is expected, given the parental RV genotypes.
Transmission distortions in a gene are combined using
SVM. The area under receiver operating characteristic
(area under the curve [AUC]) was generated by SVM

* Correspondence: rcantor@mednet.ucla.edu
1Department of Human Genetics, David Geffen School of Medicine,
University of California at Los Angeles, Los Angeles, CA 90095, USA
Full list of author information is available at the end of the article

Lu and Cantor BMC Proceedings 2014, 8(Suppl 1):S98
http://www.biomedcentral.com/1753-6561/8/S1/S98

© 2014 Lu and Cantor; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:rcantor@mednet.ucla.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


when contrasting the transmission between affected and
unaffected children is estimated for each gene under ana-
lysis and used as the test statistic. The strength of Trio-
SVM is that it allows for each RV to either confer risk or
to be protective and contribute to an overall score in
which the direction of the effect for each RV is not a factor
in the score.
One potential concern is the availability and choice of

control groups for the SVM. First, the control sample
should be beyond the age of risk for the disorder under
analysis and have appropriate environmental exposures
when those are known to be important. Second, to pro-
vide an opportunity for transmission of RVs from par-
ents to their children, ethnic matching, although not
necessary, may be helpful. An interesting choice might
be the unaffected siblings from the trios in the study
because they would have the same opportunities to
inherit the RVs that are transmitted to their affected
siblings.

Methods
An overview of support vector machine
The purpose of the SVM is to discriminate between two
groups using a set of variables. It is particularly useful
when the number of variables is greater than the num-
ber of individuals in the data set. SVM is based on a
model with N ordered pairs (yi, xi) where yi is a binary
outcome with a vertex −1 assigned to one group and +1
to the other and, xi = (xij), j = 1, 2, ..,M, is a vector with
M predictors.
If “.” denotes the dot product and “^” the parameter

estimate, SVM constructs two hyperplanes in space,
H1 : xi.w + b = −1 and H2 : xi.w + b = +1 in which the
weights w and the offset b are estimated to maximize

the separation of (
2

| |w| |)between H1 and H2, with the

constraint yi (xi.w + b) − 1 ≥ 0;∀i (i.e., all of the observa-
tions of two groups are separated by the two hyper-
planes). The optimization is equivalent to minimizing

Lp =
1
2

‖w‖2 +
∑N

i
αi(1 − yi (xi.w + b)), with respect to

w and b, where αi ≥ 0 are Lagrange multipliers. Geome-
trically, ŵ is a function of Ns support vectors, with non-
zero αi that locate on the margins of H1 and H2,and the

solution of w .xi is given by
Ns∑
s

αsysxs. xi.

SVM provides the advantage of allowing M to be > N
because the solution that estimates w is based on the
support vectors. An additional advantage is the relaxation
of linear mapping by using a kernel function K that
corresponds to a nonlinear function ϕ such that xi
is replaced by ϕ(xi) and xs.xi is replaced by
(xs, xi) = ϕ (xs) .ϕ(xi). Using a Gaussian kernel with a

scale, σ 2
g , the dot product ŵ .ϕ(xi) is expressed as∑Ns

s
αsysexp(−‖xs − xi‖2/2σ 2

g ). A penalty term (in gen-

eral denoted by C) is added for a generalization of the
optimal hyperplane when the data do not allow the two
groups to be completely separated, which limits the
Lagrange multipliers to range between 0 and C.

Adapting support vector machine for parent-child trios:
Trio-SVM
Trio-SVM analyzes a set of N parent-child trios, in
which each child is described by a coordinate (yi, xi), for
the M RVs observed for that child and his or her par-
ents and yi is -1 when the child is affected and +1 other-
wise. Here xi incorporates the conditional distribution of
RVs on parental genotypes using the framework of the
family-based association test (FBAT) [3]. At each RV
site j, xij is the difference between the observed and
expected transmission of an RV to the child given the
two parental genotypes for that RV. Using this, each
child then gets a composite score for the test gene,
yi,score, which is modeled by ŵ .ϕ (xi) + b̂ , which aggre-
gates the RV. The AUC (denoted by θ) of yscore for H0:
θ <= 0.5 vs Ha: θ > 0.5 is used to represent the compo-
site scores for distorted transmission within a gene over
the sample of trios comparing those who are affected
with those who are not. Accepting that θ is greater than
0.5 indicates the combined RVs in the gene are trans-
mitted with greater distortion from that which is
expected in the cases when compared with the control
participants. The test is one-sided because each group is
assigned to a fixed vertex; the statistic θ̂/SE(θ̂) is asymp-
totically Gaussian. For case-control analyses, one would
let xij count the number of RVs at each site.

Applying Trio-SVM to Genetic Analysis Workshop 18
pedigree data
For the GAW18 data, Trio-SVM was used to combine
all observed RVs for a given gene, by selecting all
affected and unaffected individuals having both parents
in each pedigree and treating them as independent. A
total of 275 such trios were derived from the 959 indivi-
duals in 20 GAW18 pedigrees ascertained for type 2
diabetes (T2D). The pedigree members were genotyped
at 472,049 SNPs on GWAS platforms. Half of the sam-
ple (n = 464) was sequenced at 8,348,674 sites, and
imputation of nonsequenced individuals was performed
using the GWAS data, thus providing each individual
with a constellation of RVs. Blood pressures were taken
longitudinally at from 1 to 4 exams for 932 participants.
Hypertension was assigned based on systolic blood pres-
sure (SBP) greater than 140 mm Hg, diastolic blood
pressure (DBP) greater than 90 mm Hg, or use of anti-
hypertensive medications.
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Trio-SVM accepted the input of the GAW18 pedigree
data in linkage format, and the noninformative sites in
which no RVs were observed were removed. All trios with
two parents available were gleaned from the pedigrees and
treated as if they were independent for these analyses. How-
ever, because they are not independent and LD reaches
much greater distances in pedigrees than in independent
samples, significant results with Trio-SVM may lead to
false positives in such pedigrees. Specifically, for a disorder,
if there is a causal common variant, its haplotype will segre-
gate with the disorder throughout the pedigree. Any RVs
that are on the haplotype in the pedigrees will be carried
along with it, and genes that happen to have many RVs on
that haplotype will be implicated. If the RVs are not in the
causal gene, a type I error regarding association will occur.
Analyses were focused on chromosome 3, as suggested

by the GAW18 organizers. Two T2D GWAS candidate
genes, ADCY5 at (3q21.1) [4] and UBE2E2 (3p24.2) [5],
on a different arm of chromosome 3 were tested using
Trio-SVM. For comparison, SVM without transmission
information was used to analyze 108 founders consisting
of 67 cases and 41 control participants.

Trio-SVM type I and type II error rates using the
simulated pedigree data
Two hundred replicates of the genotyped data in the
GAW18 pedigrees with the trait simulated under specific
genetic models were available for assessments of type I and
II statistical errors. The genes on chromosome 3 that were
predisposing and nonpredisposing in the simulated models
were tested. RVs were included in the analysis when their
frequencies were less than 0.01 and less than 0.03 in two
separate assessments. These analyses were performed on
the simulated trait, hypertension, defined in two ways: (a)
adjusted by age, age × gender, gender, and use of antihy-
pertensive medications and (b) not adjusted. Covariates
were included using linear mixed models with a random
effect to account for the intrapedigree correlation. The
traits were adjusted to age 38, no medications, and male
gender. Power analyses were based on evaluating the pre-
disposing gene MAP4, and the type I errors were assessed
for the nonpredisposing gene, ARL13B (93.8 Mb), located
between RYBP (72.5Mb) and B4GALT4 (118.9Mb), where
both influenced DBP or SBP. To evaluate the power in a
larger sample size, 500 and 1000 trios were drawn from the
200 replicates using bootstrap sampling.
Trio-SVM was evaluated using a Gaussian kernel (σ 2

G
fixed at 1) and 5-fold cross-validation for model selec-
tion across different C, from 1 to 10.

Results and discussion
Trio-SVM analysis of type 2 diabetes candidate genes
Table 1 reports the results of the two candidate genes
tested for association in the GAW18 pedigrees with Trio-

SVM. They both show association with hypertension with
p-values of 3.2E-04 for ADCY5 at 3q21.1 and 0.035 for
UBE2E2 at 3p24.2. For this analysis, genes were selected
on both arms of chromosome 3 because we wanted to see
if we could detect independent signals given the poor reso-
lution because of LD in pedigrees. Association in the set of
108 founders, in which 58 independent cases were com-
pared with 50 independent control participants, was not
detected. However, this limited sample provides very low
power. A significant p-value for the AUC statistic has two
possible interpretations. Either a consistent set of SNPs is
responsible for the signals in a gene or different variants
are contributing to the signals in the different pedigrees
[6]. However, disentangling these with the large number
of variants contributing to these signals is not
straightforward.

Trio-SVM: power and type I error
Table 2 summarizes the assessments of power and type
I error. In the adjustment, we used the averages of slope
estimates over 200 linear mixed models on the 200
replicates. The powers were increased by the adjust-
ment. Of the sites with minor allele frequencies (MAFs)
less than 0.03, 9 individual variants explained a total
variance of 1.73 to 2.04% in DBP or SBP traits while the
variant, temp_323826, was removed in the set of MAF
less than 0.01 that explained a total variance of 0.8 to
0.9%. The maximum power, 0.19, was achieved by using
the adjusted simulated traits and was increased by 0.05
as adding 91 sites (0.01 <MAF <0.03). The small incre-
ment may be a result of the fact that the sites in LD
with the functional variant, temp_323826, were already
included in the group with MAFs less than 0.01. Subse-
quently, we evaluated the power of MAFs less than 0.03
using large samples generated from the bootstrap and
the adjusted simulated traits (Table 3). A 0.80 power at
0.05 a was nearly reached using 500 trios, and the
power was over 0.80 at a more stringent a (0.0001)
using 1000 trios. It is of importance that type I errors
distributed around 0.05 and were not inflated by the
adjustment.

Table 1 Trio-SVM analyses of candidate genes in GAW18
trios and founders

Trios (n = 275)
66 case trios

209 control trios

Founders (n = 108)
50 cases founders
58 control founders

Gene (#Bp) #RV
sites

AUC (SE) p-Value AUC (SE) p-Value

ADCY5
(166,249)

426 0.637
(0.040)

3.2E-04 0.554
(0.056)

0.17

UBE2E2
(387,512)

917 0.575
(0.041)

0.035 0.539
(0.057)

0.25

AUC, the area under the curve; RV, rare variant; SE, standard error.
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Conclusions
Applications of machine learning methods in genomic
data are just beginning [7-9]. Using SVM, we developed
a novel approach for analysis of RVs to handle high-
dimensional genomic data, relax a linear relationship
between (yi, xi), and control population stratification.
One disadvantage is that the magnitude of ŵ cannot be
explicitly expressed by using a nonlinear kernel. Impor-
tantly, we can detect the association between RVs and a
test trait when applying Trio-SVM to a sample com-
posed of nuclear families. Our future work is to increase
the power by considering other newly defined kernel
functions, such as wavelet transform, and make the
extension a viable option in our code. The MATLAB
code of Trio-SVM can be obtained from the authors.
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Table 2 Trio-SVM type I error and power in GAW18
simulated data (267 trios)

RV
frequency

Trait
adjusted

#RV
sites

Power #RV
sites

Type I error (for p-
values <0.05)

<0.03 No 405 0.15 115 0.040

Yes 0.19 0.055

<0.01 No 314 0.11 91 0.065

Yes 0.14 0.065

RV, rare variant.

Table 3 Trio-SVM power in multiple replicates

a1 500 trios 1000 trios

p-Value <0.05 0.755 0.995

p-Value <0.01 0.610 0.980

p-Value <0.001 0.405 0.930

p-Value <0.0001 0.215 0.870
1Level of significance for the gene under analysis.
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