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Abstract

This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in
genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a)
linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures
outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed
models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the
variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed
models decorrelate the data is based on Aulchenko et al.’s GRAMMAR. By analyzing systolic and diastolic blood
pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic
variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze
the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal
measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide
polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic
blood pressure as the outcome.

Background
Hypertension is a major morbidity and mortality risk fac-
tor for stroke, myocardial infarction, heart failure, and
end-stage renal disease [1]. It is a multifactorial disorder
resulting from inheritance of several susceptibility genes,
as well as multiple environmental determinants, includ-
ing weight control, dietary intake, physical activity, and
alcohol consumption [2]. To date, several variants have
been identified by genome-wide association studies
(GWAS) as being associated with blood pressure and
hypertension [1,3,4]. Various statistical, data mining, and
machine learning strategies have shown some promise
for identifying genetic variants, but are not scalable to
large-scale GWAS [5,6]. Linear mixed models (LMMs)
are widely used in controlling for phenotypes and relat-
edness within GWAS [7]. In the application of LMMs for

GWAS data the covariates are included as fixed effects,
whereas kinship among individuals is incorporated as a
variance-covariance structure of the random effect for
the individuals. We followed Aulchenko et al’s [8] resi-
dual approach, which is based on a 2-step strategy in the
application of the LMM. The first step optimizes a
reduced LMM with the genetic marker effect excluded.
In the second step, the residual from the reduced LMM
is fitted as the dependent variable to test each marker in
a linear model.
We give an overview of 3 LMMs for the analysis of

Genetic Analysis Workshop 18 (GAW18) data, paying
attention to the power of selecting an associated single-
nucleotide polymorphism (SNP) from chromosome 3 and
simulated phenotype data. In particular, we apply 3 types
of LMMs for statistical analysis of baseline measurements,
mean measurements, and longitudinal data. We compare
the LMMs through simulations and illustrate them using
the real phenotype data.
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Methods
Data and quality control
We use 3 models to analyze the GWAS data set from
chromosome 3 of the GAW18: a Diabetes-GENES Pro-
ject, which consists of whole genome sequence data in a
pedigree-based sample, longitudinal phenotype data for
hypertension and related traits, and selected covariates.
In this GWAS data, 65,519 SNPs have been genotyped
for chromosome 3. In the simulated phenotype data,
849 subjects were measured at 3 time points for age,
medication use, smoking status, and blood pressure. As
is standard practice, SNPs with minor allele frequency
(MAF) <1% were excluded from data analysis. We also
filtered out SNPs with low call rates (<90%) and devia-
tion from Hardy-Weinberg equilibrium (p value ≤ 1e−6).
The quality controls were implemented using the R
package SNPassoc [9]. In addition, we excluded 4 indivi-
duals because more than half of their SNP values were
missing. After filtering, a total of 27,313 SNPs and 845
samples met our quality-control criteria and were used
for analysis. The family relationships among these indi-
viduals were copied from the pedigree on the real data.

Statistical analysis to evaluate the effect of SNPs
We consider 3 LMMs to evaluate the effect of SNPs on
systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) separately.

Model 1: GRAMMAR approach for baseline measures
analysis
Aulchenko et al. [8] proposed a genome-wide rapid
association using mixed model and regression (GRAM-
MAR) to assess significance of the effect of a poly-
morphism. The method first obtains residuals adjusted
for family effects and then analyzes the association
between these residuals and genetic polymorphisms
using least-squares methods. The model is expressed as
follows:
Initial model. The initial model is yij = β0 +

∑

k

βkxijk + G + eij,
where yij is the value of phenotype corresponding to the
jth individual in the ith pedigree, xijk is the value of the
kth covariate or fixed effect, βk is an estimate of the kth

fixed effect or covariate, and eij is the vector of residual
effects. G is the random polygenic effect that follows a
multivariate normal distribution with mean 0 and var-
iance �σ 2G, where � is the relationship matrix (kinship
matrix) and σ 2G the additive genetic variance as a result
of polygenes. The vector of estimated residuals is given

by y∗ = y − (β̂0 +
∑

k

β̂kxijk + Ĝ) = ê.

SNP model. The residuals are used as the dependent
trait in a simple linear regression for each SNP,
ê = α∗ + γ1SNP1 + ε, where γ1 is the coefficient of the lth

SNP from the model 1 scenario. The method adjusts for
familial relationship and is computationally fast, but the
model only considers the time 1 information from the
GAW18 data. The first stage model is implemented
using the polygenic() function of the R package GenA-
BEL, and the kinship matrix is estimated using the R
package kinship2. Next, the lm() function is used for fit-
ting the linear model with residuals obtained from the
first-stage model.

Model 2: Two-stage LMM for mean measured outcome
analysis
We considered the measurement of the mean across the
3 time points as the outcome and followed the 2-stage
approach. The model formula for the first stage is

ȳij = β0 +
∑

k

βkxijk + G + eij, where ȳij denotes the mean

phenotype across the time points for the jth individual
in the ith pedigree. β is the coefficient for unknown
fixed effects representing nongenetic effects (mean age
across time points, sex, smoking status at time 1, and
medication use at time 1), and G is the random poly-
genic effect that follows a multivariate normal distribu-
tion with mean 0 and variance 2Kσ 2

G , where K is the
kinship matrix with elements kij(j = 1, 2, . . . ,ni) calcu-
lated from pedigrees, and σ 2

G is an unknown genetic var-
iance; e is a vector of random residual effects that are
normally distributed with zero mean and variance-cov-
ariance R = Iσ 2

e , where I is the identity matrix and σ 2
e is

the unknown residual variance.
In the second stage we consider the residuals as the

outcome and fit the linear model, ê = β∗ + γ2SNP1 + ε,
where γ2 is the coefficient of the lth SNP from the
model 2 scenario. We implemented the model using the
R package kinship (R 2.10.1). The lmekin() function is
used to obtain the residuals from the first-stage model.

Model 3: Two-stage LMM for longitudinal analysis
We also evaluate a 2-stage LMM that takes longitudinal
measurements into account. We consider 2 models,
without and with time effects, in the application of the
longitudinal analysis. In the first stage, we fit a random
intercept LMM as follows:

(A) yijt = β0 +
∑

k

βkxijtk + G + eijt(1)

Next, we extend the first-stage model allowing time
points:

(B)yijt = β0 +
∑

k

βkxijtk + vzt + G + eijt(2)

where yijt denotes the phenotype (SBP or DBP) for the
jth individual in the ith pedigree at time t. xijt is the k
fixed effect time-dependent covariate, v is the slope
coefficient for the time points zt; t = 1, 2, 3, and G is
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the random polygenic effect as in model 2; e is a vector
of random residual effects that are normally distributed
with zero mean and covariance R0 = Iσ 2

e0, and σ 2
e0 is the

unknown residual variance. Then we consider the mean
of the residuals across the time points as the outcome
and fit the model ē = β∗∗ + γ3SNPl + ε where ē is the
vector of mean residuals across the time points and γ3 is
the coefficient of the lth SNP from the model 3 scenario.
We applied the model using the R packages pedi-
greemm and kinship.

Results
Simulated data analysis
We investigated the performance of the 3 LMMs for
selecting a known associated SNP from simulation stu-
dies. The 3 models are employed after adjusting for cov-
ariates and pedigree information, and the p values for
each SNP are used to rank the SNPs.
The simulated phenotype data in GAW18 has 10

known SNPs from chromosome 3 that are associated

with blood pressure. Among these SNPs, 2 have MAF
>0.05. These 2 variants are rs6442089 (gene symbol:
MAP4, position: 47956424, and MAF: 0.367) and
rs1131356 (gene symbol: FLNB, position: 58109162, and
MAF: 0.488). We investigated the 3 LMMs in terms of
selection performances of rs6442089. We selected
rs6442089 because it is a well-known SNP from the
gene MAP4 that affects blood pressure.
We denote a SNP to be significant either if its p value is

smaller than a cutoff value or if it belongs to a target
number of ranked SNPs. For example, if our target num-
ber of selected SNPs is 200, then a SNP will be called
truly identified from a simulated phenotype data if its
rank belongs to the top 200. Alternatively, if our target
cutpoint for p value is 0.001, then a SNP will be called
truly identified if the p value of the SNP is found to be
less than 0.001. The proportion is estimated by counting
how many times from the 200 simulations the SNP
(rs6442089) was in the list of target SNPs or within the
p value cutpoint. Figure 1 lists the proportions for the 3

Figure 1 Identifying a known significant SNP by three LMMs using the simulated GAW18 data.
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methods. Figure 1A indicates that the GRAMMAR pro-
cedure with the baseline measures is more effective than
any of the other methods in selecting the SNPs consider-
ing SBP as outcome. But we found that the GRAMMAR
procedure was not effective with baseline DBP measures
among the models (Figure 1C). As seen in Figures 1Band
D, LMM with mean measures outcome has greater
power to detect the genetic variant considering a cut-
point of p values. It appears from the figures that apply-
ing LMM to longitudinal DBP data provides better
results in selecting the SNP compared to any of the other
methods. We found similar results by both Model 3(A)
and Model 3(B). That is, the results from Model 3(A) and
Model 3(B) do not look qualitatively different from each
other: In both cases, the performance of selecting the
SNP is lower in SBP and higher in DBP.

Application to real data
We employed the 3 LMMs to real phenotype SBP data
after adjusting for covariates and we rank the SNPs
using the p values for each SNP. We considered first 3
time points to avoid the missing values of the fourth
time point, and we applied the 3 models to the same
845 individuals who were selected in the simulated data
analysis. We report 5 top-ranked SNPs in Table 1. It
can be seen that the p values from the LMM with longi-
tudinal measurements are conservative compared to
other methods. After investigation of the top 20 SNPs
we found 3 SNPs in common across the models. The
ranks for the known SNP, rs6442089, are 4376, 3105,
and 758 by the LMMs with baseline, longitudinal
(Model 3A), and mean measures outcome, respectively.
Therefore, the real phenotype data suggest that the
LMM with mean measurements performs best among
the 3 methods for identifying the SNP rs6442089.

Discussion
In this article we applied 3 LMMs to the study of
GAW18 in family data and in settings of relevance to
baseline measures, mean measures, and longitudinally
measured data. The statistical analysis of GWAS for
GAW18 data using LMMs with longitudinal DBP mea-
surements is capable of revealing the dynamic pattern of

genetic control over chromosome 3 but did not perform
competitively with other models for longitudinal SBP
measurements. Exploratory/graphical analysis for the
trajectories of SBP and DBP measurements also sup-
ported the conclusion that DBP had more subject-speci-
fic variability in slopes than SBP. However, the
GRAMMAR approach with single-measure SBP data at
baseline can be used on the development of SNP
selection.
A general consideration applicable to all the methods

discussed here concerns the issue of whether the out-
come is linear or nonlinear. An alternative approach
could be to relax the conditions imposed on linear mod-
els and explore the hidden structure by using a varying
coefficient model [10]. Consequently, it will be interest-
ing to apply another method assuming the effects of
SNPs are smooth functions of time.

Conclusion
We showed that a linear mixed modeling framework was
most accurate at identifying known single-nucleotide
polymorphism compared to other competing methods
we considered in this manuscript for the analysis of long-
itudinal measurements of diastolic blood pressure. In
contrast, baseline measures performed best with systolic
blood pressure highlighting that, depending on the trajec-
tory profile of the quantitative trait of interest, either just
baseline values or serially measured values can be useful
in genetic association studies.
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