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Abstract

In the last few years, a bewildering variety of methods/software packages that use linear mixed models to account
for sample relatedness on the basis of genome-wide genomic information have been proposed. We compared
these approaches as implemented in the programs EMMAX, FaST-LMM, Gemma, and GenABEL (FASTA/GRAMMAR-
Gamma) on the Genetic Analysis Workshop 18 data. All methods performed quite similarly and were successful in
reducing the genomic control inflation factor to reasonable levels, particularly when the mean values of the
observations were used, although more variation was observed when data from each time point were used
individually. From a practical point of view, we conclude that it makes little difference to the results which
method/software package is used, and the user can make the choice of package on the basis of personal taste or
computational speed/convenience.

Background
A number of different methods/software packages have
been proposed in the last few years that implement linear
mixed-model approaches to account for population struc-
ture and relatedness among samples in genome-wide asso-
ciation studies (GWAS), but no detailed comparisons
among them have been made before our effort. Indeed,
when a new method/package is developed, it is often quite
unclear whether or how it differs substantially from those
already available. To address this question, we explored
the performance of various implementations of such
methods in the longitudinal Genetic Analysis Workshop
18 (GAW18) data set.

Methods
We analyzed the GAW18 GWAS data [1] using the real
phenotypes and the first set of simulated phenotypes.
This analysis was performed without knowledge of the
underlying simulating model. The genotype data were

cleaned using standard procedures [2]. This resulted in 4
individuals being excluded because of their total lack of
genotype data, and another individual being excluded
because of outlying ethnicity (Chinese [CHB] or Japanese
[JPT]), leaving 954 individuals whose genotype data were
used. We removed 43,987 monomorphic or low-fre-
quency (minor allele frequency [MAF] <1%) single-
nucleotide polymorphisms (SNPs), 109 SNPs with miss-
ing rate above 10% (this criterion took into account the
apparently high missing rate in some SNPs likely to be
caused by the differences in genotyping technology used
in the samples), and 1 SNP that failed Hardy-Weinberg
equilibrium testing in the control founder population.
A total of 427,952 SNPs were retained for analysis.
We conducted linear regression of the real and simu-

lated systolic blood pressure and simulated diastolic
blood pressure at each time point regressed on age, med-
ication, and smoking status. For the real diastolic blood
pressure–which, as could be physiologically expected,
seemed to have a nonlinear relationship with age–we
used a quadratic regression, including age and age
squared as predictors. The phenotype data from all indi-
viduals were used for these regressions. Residuals from
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these regressions in subjects who also had genotype data
were then used for the genome-wide analyses.
Genome-wide association analyses, adjusting for famil-

ial relatedness using genomic data, were performed using
a variety of linear mixed model approaches. All
approaches attempt to fit the model Y=b+Q+ε, where Y=
(y1, ..., yn)

T is a vector of responses on n subjects; X= (xik)
is the n × K matrix of predictor values for variables to be

modeled as fixed effects (including covariates and geno-
types at any SNPs currently under test); b=(b1, ... bK)

T

are regression coefficients (to be estimated) representing
the linear effects of the predictors on the response; Q are
random effects, Q~N(0,2sg

2F), and ε are random errors,
ε~N(0,se

2I), where sg
2 and se

2 are parameters (to be esti-
mated) representing the genetic and environmental com-
ponents of variance respectively; F is the n × n matrix of

Figure 1 Q-Q plots and genomic inflation factors for different methods. These were calculated for each phenotype (real diastolic blood
pressure [DBP], real systolic blood pressure [SBP], simulated DBP, and simulated SBP), using either longitudinal ("long”) or average ("mean”)
residuals. EM_BN, EMMAX using Balding-Nichols matrix; EM_IBS, EMMAX using IBS matrix; FLM_C, FaST-LMM using standard covariance matrix;
FLM_R, FaST-LMM using realized relationship matrix; GA_FA, GenABEL/FASTA; GA_GRG, GenABEL/GRAMMAR-Gamma; GMA_C, Gemma using
centralized covariance matrix; GMA_S, Gemma using standardized covariance matrix. The diagonal line represents the identity line in each panel.
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pairwise kinship coefficients; and I is the n × n identity
matrix. The approaches vary with respect to precise
details of the calculation of kinship or “relatedness” and
with respect to whether an exact method or a fast
approximation is used (for more details, see descriptions
in references [3-9]). In each case we used a subset of
21,153 SNPs to perform the relatedness calculations,
namely SNPs with MAF >0.4, <5% missing data, and

“pruned” to be in approximate linkage equilibrium via
the PLINK command “-indep 50 5 2”. In analyses of
other data sets we have found little difference between
results when using such a pruned set of SNPs for calcu-
lating relatedness and when using the full set of SNPs
(data not shown).
The methods considered were: (a) EMMAX [3], which

implements 2 methods for relatedness calculations: one

Figure 2 Comparison of −log10 p values at each SNP calculated using different methods. The upper triangles show the values based on
mean residuals, while the lower triangles show the values calculated using longitudinal data. DBP, diastolic blood pressure; EM_BN, EMMAX
using Balding-Nichols matrix; EM_IBS, EMMAX using IBS matrix; FLM_C, FaST-LMM using standard covariance matrix; FLM_R, FaST-LMM using
realized relationship matrix; GA_FA, GenABEL/FASTA; GA_GRG, GenABEL/GRAMMAR-Gamma; GMA_C, Gemma using centralized covariance matrix;
GMA_S, Gemma using standardized covariance matrix; SBP, systolic blood pressure.
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based on identity-by-state (IBS) sharing and one based on
the Balding-Nichols method [4]; (b) FaST-LMM [5],
which also implements 2 methods to adjust for related-
ness: one using a standard covariance matrix and one
using the realized relationship matrix; (c) the polygenic/
mmscore functions in GenABEL [6], which implement
the FASTA method [7]; (d) the polygenic/grammar func-
tions in GenABEL, which implement the GRAMMAR-
Gamma approximation [8]; and (e) Gemma [9], which
uses an efficient exact method. Simple linear regression
without any relatedness adjustment was also performed
in FaST-LMM. All analyses were performed using both
the residual from each individual observation (modeled
without regard to its true longitudinal nature, or longitu-
dinal) and the mean of the residuals for each subject, or
mean. Genomic inflation factors (l) were calculated as
proposed by Devlin and Roeder [10]. We also assessed
the genomic inflation factors for unadjusted c2 and
Cochran-Armitage trend tests of hypertension status at
each time point as calculated using PLINK [11].

Results and discussion
Figure 1 shows the Q-Q plots and genomic inflation fac-
tors for different methods. It is well known that population
substructure and relatedness will cause an inflated distri-
bution of genome-wide association test statistics (l > 1.00)
if not appropriately modeled. All methods performed rea-
sonably well for the mean residuals, controlling the l to
0.99 to 1.03. For longitudinal data, most methods also per-
formed well, with l in the range of 0.95 to 1.05, except
perhaps for GRAMMAR-Gamma, which achieved ls of
approximately 1.08 to 1.09 for the simulated phenotypes.
However, even these values were much less inflated com-
pared to the l values of 1.22 to 1.68 (mean) and 2.04 to
3.41 (longitudinal) seen in the unadjusted analyses. The
higher inflation in longitudinal analyses (even when
adjusting for relatedness) could be expected from the fact
that additional (nongenetic) within-subject correlation was
not allowed for in these analyses; indeed, one could argue
that this behavior is statistically the “correct” behavior,
with GRAMMAR-Gamma (which gave the highest

Figure 3 A selection of Manhattan plots showing p values calculated using various methods. DBP, diastolic blood pressure; EM_BN,
EMMAX using Balding-Nichols matrix; FLM_R, FaST-LMM using realized relationship matrix; GA_FA, GenABEL/FASTA; SBP, systolic blood pressure.
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inflation) showing the “most correct” behavior. Interest-
ingly, EMMAX using the IBS matrix seemed to have the
opposite behavior, for reasons we are currently unable to
determine.
For the analyses using hypertension status, the unad-

justed genomic inflations were between 1.21 and 1.55
for the Cochran-Armitage trend test and between 1.01
and 1.27 for the c2 test.
Figure 2 compares the individual −log10 p values from

different methods. Most methods gave highly concor-
dant results, particularly EMMAX (BN) and Gemma,
whereas the 2 GenABEL methods were similar but less
concordant. This is analogous to findings on single-
observation data by Zhou and Stephens [9]. FaST-LMM
tended to perform slightly differently from the other
methods at SNPs with lower significance, although the
results overall were still quite similar.
Figure 3 shows a selection of Manhattan plots. For

each phenotype, the results from all methods were quite
similar, although the longitudinal data tended to show
stronger signals. No clearly significant SNP was found
in any phenotype, which is not surprising given the rela-
tively small size of the GAW18 data set, which is under-
powered for detecting (at genome-wide levels of
significance) anything other than strong genetic effects.
The high concordance in significance levels (at any
given SNP) achieved by the different software packages
(see Figure 2) indicates that no package is substantially
more powerful than another, as expected from the fact
that all packages implement slightly different versions of
essentially the same statistical model.
Although the results from all packages considered

here were similar, the implementations did vary in
speed. All packages performed the analysis in reasonable
time (less than 1 day) on our system. Precise timings
will depend on the computer resources and architecture
available, but as a rule of thumb we found FaST-LMM
and GRAMMAR-Gamma to be the fastest (taking just a
few hours), followed by EMMAX and Gemma, which
took 12 to 16 hours, and GenABEL/FASTA, which took
18 to 20 hours.

Conclusions
All methods performed well and results were similar,
particularly at the most significant SNPs. We conclude
that (at least for nonlongitudinal traits) it makes little
difference to the results which method/software package
is used, and the user can make the choice of package on
the basis of personal taste, speed, or computational con-
venience. For longitudinal traits (modeled without
regard to their longitudinal nature) the slight differences
seen between the methods would be an interesting topic
for further investigation, but it is beyond the scope of
the current article.
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