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Abstract

We propose a genetic association analysis using Dirichlet regression to analyze the Genetic Analysis Workshop 18
data. Clinical variables, arranged in a longitudinal data structure, are employed to fit a multistate transition model
in which the transition probabilities are served as a response in the proposed analysis. Furthermore, a gene-based
association analysis via penalized regression is implemented using the markers at a single-nucleotide
polymorphism level that we previously identified via nonpenalized Dirichlet regression.

Background
Genetic association analyses have had tremendous suc-
cesses in recent years; however, most of these analyses
were based on binary or continuous responses. Thus we
propose a multivariate response vector indicating prob-
abilities of transitions to predefined hypertensive states.
This enables us to reflect the inherent uncertainty
involved in the probability that a patient will transfer to
a given state.
An important feature of our approach is the incor-

poration of prehypertension as an intermediate state. As
Winegarden argues, prehypertension blood pressure in
young patients helps predict the development of hyper-
tension [1].

Methods
Definition of response
We defined a response summarizing the phenotype
information into a vector that will be used in a
genetic association analysis. The response is defined
as a 3-dimensional vector of probabilities

y =
(
y1, y2, y3

)
,
∑yj

= 1
(
y1, y2, y3

)
,
∑yj

= 1, such that

each element measures the probability of a transition to
a blood pressure level (normotensive, prehypertensive,
or hypertensive) given the previous level.
The analysis was done without the knowledge of the

underlying simulation model and we used the real phe-
notype data only.

Data quality control
Data quality control was performed in PLINK [2]. We only
considered the data from chromosome 3 for analysis. We
used a call rate for individuals of 95%, a Hardy-Weinberg
disequilibrium test at a significance level of 1 × 10−6, and a
missing rate of 95% for each marker. Markers with a
minor allele frequency of at least 5% were retained for ana-
lysis. Additionally, all individuals’ time points with at least
1 missing clinical variable were excluded.

Multistate transition model
We describe hypertension, our trait of interest, using a
3-state model based on recorded blood pressure levels
for each individual at each examination. The states are
defined as follows: normal blood pressure (state 1) when
the systolic blood pressure is less than 120 mm Hg and
diastolic blood pressure is less than 80 mm Hg; prehyper-
tension (state 2) when the blood pressure level is not in
state 1, the systolic blood pressure is less than 140 mm
Hg, and the diastolic blood pressure is less than 90 mm
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Hg; and hypertension (state 3) for all other cases. Also, if
a patient used antihypertensive medication, the state
assigned at that examination is hypertension (state 3)
regardless of the recorded blood pressure levels. Once
the states are defined, we consider a multistate transition
model; it is important to note that all 9 transitions are
possible.
Our interest in transition models lies in estimating of

the transition probabilities as defined in Kalbfleisch and
Lawless [3] which are given by

P(Si (t) = j | Si (t − 1) = l, xi(t − 1)) = yilj(t), l, j ∈ {1, 2, 3}

where {Si (r) , r = 1, 2, . . .} and {
xi (r) = (xi1 (r) , . . . , xip (r)), r = 1, 2, . . .

}
denote the observed state and the covariates for subject
i at the rth examination respectively.
This model takes advantage of the longitudinal data

structure and the definition of the response follows
naturally. To estimate the transition probabilities, we
fit a multinomial regression model, based on covariates
(gender, smoking status and age) and the state at the
previous examination.
To get expressions for yil =

(
yil1, yil2, yil3

)
, l = 1, 2, 3, we

consider a generalized logit model of the form

log
(
yilj/yill

)
= zilγlj, j = 1, 2, 3, j �= l

besides, 1 = yill +
∑3

j=1,j�=l yilj = yill

(
1 +

∑3

j=1,j�=l exp(zilγlj)
)
,

where zil = (xi (l) , time) is the observed vector of covari-
ates for subject i plus a categorical variable denoting the
effect of examination time in the model (and possible
interactions), and γlj is the vector of coefficients for the
corresponding multinomial regression model.
Thus, a transition probability matrix (TPM) is defined

for each individual as follows

TPMi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1 +
∑3

j=2 exp(zi1γ1j)

exp(zilγ12)

1 +
∑3

j=2 exp(zi1γ1j)

exp(zilγ13)

1 +
∑3

j=2 exp(zi1γ1j)
exp(zi2γ21)

1 +
∑3

j=1,j�=2 exp(zi2γ2j)
1

1 +
∑3

j=1,j�=2 exp(zi2γ2j)
exp(zi2γ23)

1 +
∑3

j=1,j�=2 exp(zi2γ2j)
exp(zi3γ31)

1 +
∑2

j=1 exp(zi3γ3j)

exp(zi3γ32)

1 +
∑2

j=1 exp(zi3γ3j)

1

1 +
∑2

j=1 exp(zi3γ3j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, the response for subject i is a row taken
from TPMi and is determined by conditioning on the
patient’s last available observed state and covariates.

Dirichlet regression
Once the response is modeled our objective is to
determine whether there is an association between it
and the genotypes. We assess this association using
Dirichlet regression [4], which suits this response
structure. The advantage of this approach lies in its
tractability in dealing with the proposed response. It
also allows a more comprehensive understanding of
the genetic effect on the expression of hypertension,

and therefore in its possible interpretation. For
instance, if a signal was detected for a marker, it
would suggest an association between the marker and
the transition of blood pressure states jointly rather
than a single level. Therefore, the Dirichlet approach is
more informative in the sense of explaining the plausi-
bility of each defined state.
To relate the genetic information and the defined

response under a Dirichlet regression approach, the like-
lihood given each individual’s vector of covariates, si, is

L =
∏n

i=1

⎧⎨
⎩�

(
�(si)

) 3∏
j=1

y
λj(si)−1
ij

�
(
λj(textbfsi)

)
⎫⎬
⎭

where λj (si) = λij > 0,�(si) = �i =
∑3

j=1
λj (si) and

�(·) is the gamma function.
The parameters, λj (si), are defined in terms of a linear

predictor using a logarithm link,

log
(
λj (si)

)
= log

(
λij

)
=

∑M

m=1
βjmsim = siβj j = 1, 2, 3

where M is the number of covariates included in the
model and βj is the vector of regression coefficients that
explains the effects (in log scale) of the covariates on
the jth component.
Considering the above, 2 models are analyzed:

Model 1 (M1): log
(
λij

)
= αM1

j + βM1
j gki (base model)

Model 2 (M2): log
(
λij

)
= αM2

j + βM2
j gki + FAMiδ

M2
j

(adjusted model)
Here gki represents the number of copies of the minor

allele on the kth single-nucleotide polymorphism (SNP) for
the ith individual under an additive genetic model; FAMi

is the ith row of contrast matrix for the pedigree number

considered as a categorical variable and θh
j = (αh

j ,β
h
j , δ

ht
j)
t

is the vector of regression coefficients on the jth compo-
nent. (Note δM1

j = 0).
Our interest in these models lies in the potential

genetic effect of each marker on the proposed response.
To assess this, Wald statistics were used to test the null
hypothesis of no association between each SNP and the
response, H0 : β = 0 (vs.HA : notH0), β = (β1,β2,β3).

Gene-based association
Once we identify significant SNPs through the genetic
association analysis as described above, we proceed to
perform the analysis at a gene level. To achieve this, we
propose a penalized regression. Including all the mar-
kers simultaneously, this penalized method aims to
select those SNPs with higher association. The analysis
is done on those candidate genes that contain at least 1
significant marker that has already been determined.
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Variable selection on the SNPs is assessed via a pena-
lized likelihood of the form

pl (η;Y,G, c, κ) = l (η;Y,G) − cκ
∑p

l=1

√
k‖η·l‖2 − (1 − c)κ

∑p

l=1
‖η·l‖1

where l (η;Y,G) represents the log-likelihood of a
dirichlet distributed sample with response matrix
G = (gt1, . . . , g

t
n)

t G = (gt1, . . . , g
t
n)

t (or G : FAM for M2)
is the design matrix, gi = (1, g1i , . . . , g

p
i ); p denotes the

number of markers considered for variable selection; k
is the number of states; η is the regression coefficients
vector; c and λ are parameters for the penalized regres-

sion; and ‖η.l‖2 =
(∑k

j=1
η2
lj

)1/2

and are the penalty

norms. It is important to note that when c = 1 we have
a ridge regression penalty, whereas when c = 0 we have
a lasso penalty. We implement the variable selection for
the penalized dirichlet regression using R code provided
on the Statistical Genetics and Genomics Laboratory at
the University of Pennsylvania webpage [5].

Results
Data quality results
The Genetic Analysis Workshop 18 (GAW18) data con-
sists of 855 individuals with genotype and phenotype
information. As a result of missing data, transition prob-
abilities are estimated for only 835 individuals. Of these,
43 are removed because of low call rate. The overall call
rate for the remaining 792 individuals is 99.82%.
The Genome Wide Association Study (GWAS) data

includes 65,519 SNPs for chromosome 3, of which 59
are excluded because it is not possible to reliably obtain
position information for these markers. The remaining
65,460 SNPs are considered for data quality control.
Because of a low genotyping rate, 114 markers are
removed; none are excluded by the Hardy-Weinberg
equilibrium test; and 13,011 markers are removed
because of low minor allele frequency. The remaining
52,357 markers are considered for analysis.

Analysis results
The parameter estimates for the transition models are
obtained using R [6]. To test examination time effect;
likelihood ratio tests are performed in which the null
model considers only the available clinical variables.
Table 1 presents the final transition models.

After the response is estimated, models M1 and M2
are fit using R [7] for each available SNP. Figure 1 dis-
plays the Manhattan plots for the p values that result
from testing the null hypotheses of no association
between the markers and the response. The graphs
show that only 1 marker under M2 is significant at the
standard significance level for GWAS (5 × 10−8). Inter-
estingly, the same marker is the most significant marker
under M1, although it is not significant at the standard
threshold. This suggests that the adjustment for family
incorporated in M2 accounts for the family structure in
the data. Also, the proposed methodology demonstrates
consistency in that the same marker proves to be the
most significant under both models. Table 2 summarizes
these findings.
Once significant markers were identified, a gene-level

association analysis is performed using the penalized
regression described above for different levels of c (0, 0.3,
0.5, 0.7, and 1). The analysis is conducted utilizing both
the GWAS and the dosage imputed genotypes (GENO)
information as the explanatory variables. Figure 2 shows
the penalized regression results for the gene containing
the significant SNP (rs12492830) for c = 0.5 only. This
level of c is a blended penalty function, equally weighting
the ridge and lasso penalties. Table 3 shows the results
for different levels of c under M2 for gene PCCB.

Discussion
The present work implements a multistate transition
model that conveniently accommodates the longitudinal
data structure. Whether the information contained by
the available clinical variables is sufficient for predicting
the hypertensive state is debatable, however.
Although the adjusted model (M2) is an improvement

over the base model (M1), neither of the described
models accounts for correlation between individuals nor
heteroscedasticity. One way to possibly overcome this is
to incorporate a latent variable into the model. Such an
extension follows.
Model 3 (M3):log

(
λij

)
= αM3

j + βM3
j gki + ui where ui is

the ith element of a vector u that follows a MVN(0,K)
distribution; here K is twice the estimated kinship
matrix. In this case, however, the estimation of the para-
meters of interest, βj, is not straightforward. Further
research of this methodology is warranted.
With respect to the penalized regression, to avoid an

arbitrary selection of c,a cross-validation method could
be implemented.

Conclusions
We propose a methodology that conveniently uses the
longitudinal data structure to define a probabilistic out-
come, which, we believe, explains hypertension in a more
suitable way. Dirichlet regression provides an interesting

Table 1 Selected transition models

Transition Model

1® j log
(
y1j/y11

)
= γ1j0 +

(
γ1j1xsex + γ1j2xsmoke + γ1j3xage

) ∗ time j = 2, 3

2® j log
(
y2j/y22

)
= γ2j0 + γ2j1xsex + γ2j2xsmoke + γ2j3xage + time j = 1, 3

3® j log
(
y3j/y33

)
= γ3l0 + γ3j1xsex + γ3j2xsmoke + γ3j3xage j = 1, 2
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Figure 1 Manhattan plots for genetic association analysis.

Table 2 Association analysis results

SNP Gene MA MAF (%) p Value (M1) p Value (M2)

rs12492830 PCCB C 7.22 1.1 × 10−7 3.9 × 10−8

MA, minor allele MAF, minor allele frequency.

Figure 2 Penalized regression results for M2 only.

Table 3 Comparison of penalized regression under different levels of c
No. of parameters selected (iterations for convergence)

Data # SNPs c = 0 0.3 0.5 0.7 1

GWAS 22 10 (260) 10 (148) 8 (135) 7 (163) 7 (174)

GENO 607 42 (427) 35 (199) 24 (176) 25 (136) 19 (115)
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approach that, along with other more common responses,
can be successfully used in genetic association analysis.
Our model finds a statistically significant marker at the
standard significant level for GWAS, which is noteworthy,
considering that it is often difficult to find association.
Moreover, when the penalized method is used on the
GENO data we are able to find significant markers in
addition to those have already found using GWAS data.
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