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Abstract

It is believed that almost all common diseases are the consequence of complex interactions between genetic
markers and environmental factors. However, few such interactions have been documented to date. Conventional
statistical methods for detecting gene and environmental interactions are often based on the linear regression
model, which assumes a linear interaction effect. In this study, we propose a nonparametric partition-based
approach that is able to capture complex interaction patterns. We apply this method to the real data set of
hypertension provided by Genetic Analysis Workshop 18. Compared with the linear regression model, the
proposed approach is able to identify many additional variants with significant gene-environmental interaction
effects. We further investigate one single-nucleotide polymorphism identified by our method and show that its
gene-environmental interaction effect is, indeed, nonlinear. To adjust for the family dependence of phenotypes, we
apply different permutation strategies and investigate their effects on the outcomes.

Background
Genome-wide association studies (GWAS) have success-
fully discovered many common variants associated with
complex diseases, but the single-nucleotide polymorph-
isms (SNPs) identified so far account for a small propor-
tion of the total heritability in quantitative traits [1].
Increasing evidence shows that gene-environment (G×E)
interactions are widely involved in the etiology of com-
plex diseases, including diabetes, cancer, and psychiatric
disorders [2,3]. The investigation of G×E interactions will
not only facilitate the identification of novel genes whose
marginal effects are undetectable, but also provide
insights into disease etiology and hence greatly benefit
drug development and personalized therapy.
The commonly applied methods to detect G×E interac-

tions are based on linear or logistic regression models
[4]. In particular, for quantitative outcomes, a linear
model is considered in the form of

y = β0 + β1G + β2E + β3G × E + ε (1)

where G is the genotype of a SNP, E is the environ-
mental factor, ε is a normally distributed random error,
and β3 is the coefficient corresponding to the interaction
term. If β3 = 0, the conditional effect of the SNP is con-
stant across different levels of the environmental factor
and we conclude that there is no G×E interaction. This
model assumes a linear interaction effect; given G, the
outcome y is linearly related with E. However, in prac-
tice, it is likely that the interaction schemes are more
complicated so that the linear model will probably fail
to capture the interaction effect. Therefore, there is a
pressing need to develop novel statistical approaches for
genome-wide G×E interaction studies. Here we propose
a nonparametric partition-based approach to detect G×E
interactions and conduct a GWAS for hypertension
using the real data set provided by Genetic Analysis
Workshop 18 (GAW18). For each SNP, both the linear
regression model and the proposed method are used to
evaluate its interaction effect with each of the 4 environ-
mental factors: age, gender, smoking status, and medi-
cine. We note that, compared with the linear model, the
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proposed method is able to identify many additional
SNPs. We further study the interaction pattern between
SNP rs17206492 and medicine, and find that this inter-
action effect is, indeed, nonlinear. We also investigate
different permutation strategies in the presence or
absence of pedigree dependence of the phenotype.

Methods
Data set
The GAW18 data set consists of GWAS data and whole
genome sequence data with longitudinal phenotypes for
hypertension and related traits from Type 2 Diabetes
Genetic Exploration by Next-generation sequencing in
Ethnic Samples (T2D-GENES) Project 2. There are 939
individuals in total, and we include in our analysis only
the 849 individuals with both phenotype data and
imputed sequence information. Each individual has mea-
surements for up to 4 time points. At each visit, systolic
blood pressure (SBP) and diastolic blood pressure (DBP)
were measured; covariates including age, use of antihy-
pertensive medication, and current tobacco smoking sta-
tus were also recorded. Gender and pedigree are known
for each subject. Genotypes of odd-numbered chromo-
somes are provided. In our study, we focused on chro-
mosome 3 as suggested by the workshop organizer for
the sake of comparison. Although we had access to the
answers for the simulated data set, we used only the
real data set in our analysis.

A general framework–a partition-based association
measure
Suppose there are n independent subjects that can be

separated by a partition
∏

. An association measure

between the outcome Y and the partition
∏

is defined as:

I =
∑

�i

ni
n

(
Yi − Y

)2

sy2/ni
(2)

where ni is the number of subjects in partition i, Yi is
the average of the outcome Y for subjects in partition i,
and Y and s2y are the mean and variance of Y from all
subjects. It has been shown that under the null hypoth-
esis

∏
does not have influence on Y, I asymptotically

converges to a weighted sum of χ2
1 distributions [5]. It

has higher power than linear regression or logistic
regression models, even in sparse partitions.

G×E association measure I
Consider a marker G and an environmental factor E.
Suppose G has 3 phenotypes, AA, Aa, and aa (A refers
to the major allele and a the minor allele), coded as 0,
1, and 2. Suppose E is divided into 3 categories: 0, 1,
and 2. Hereby G and E together create 9 partitions for

all subjects (Table 1). From the general framework in
the last section, an association measure that evaluates
the total effect of G and E on the phenotype is:

IT =
3∑

i=1

3∑

j=1

nij
n..

· (yij − y)2

s2y/nij
(3)

where all the terms are similarly defined as before and
y denotes the phenotype. The marginal effects of G and
E can be obtained in a similar fashion:

IG =
3∑

i=1

ni•
n..

· (yi• − y)2

s2y/ni•
; IE =

3∑

j=1

n•j
n..

· (y•j − y)2

s2y/n•j
(4)

The test statistic that measures the G×E interaction
effect is defined as the difference between the total
effect and the maximum of the two marginal effects:

IG×E = IT − max(IG, IE) (5)

The significance of IG×E is evaluated by the method of
permutation.

Permutation strategies
We consider 3 permutation strategies in our analysis:
global permutation, local permutation, and residual per-
mutation. Let yij denote the phenotype of the jth indivi-
dual in the ith pedigree. Global permutation is to
permute phenotypes over all individuals. For local per-
mutation, the phenotypes are permuted within each
pedigree. In residual permutation, we first compute the
residuals for each individual eij = yij − yi., where yi. is the
average phenotype for pedigree i, then permute eij over
all subjects to obtain a permuted residual e∗ij for each
individual. The permuted Y values y∗ij are obtained by
y∗ij = yi. + e∗ij. Both local permutation and residual permu-
tation assume yij = yi. + εij, where E(εij) = 0 and {εij} are
independent. Residual permutation further assumes that
{εij} have the same distribution.

Results
Partitions created by environmental factors
The real data set from GAW18 contains the records of
4 environmental factors: age, gender, smoking status,

Table 1 Partitions created by genotypic and
environmental factors

E = 0 E = 1 E = 2 Total

G = 0 n00 n01 n02 n0
G = 1 n10 n11 n12 n1.

G = 2 n20 n21 n22 n2.

Total n.0 n.1 n.2 n..

n.., Total number of subjects,; nij, number of subjects in partition ij, ni., number
of subjects in group G = i; n.j , number of subjects in group E = j.
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and antihypertensive medication usage (medicine).
Because gender is a binary variable, it partitions all indi-
viduals into 2 groups. Although this data set provides
longitudinal measurements of age, smoking, and medi-
cine, the records have many missing values (only 187
subjects have complete measurements for all 4 visits).
Therefore, for each individual, we summarized these
covariates by either the averaged value (for age) or the
sum (for smoking and medicine) across different time
points from available records and used these summar-
ized quantities in our analysis. Similarly, averaged SBP
and averaged DBP were considered as outcomes. Here
we created 3 partitions by each of age, smoking, and
medicine (Table 2).

SNPs with significant G×E interaction effects
In the GWAS data set provided by GAW18, there are
62,915 SNPs on chromosome 3. For each SNP, we
evaluated its interaction effect with each of the 4
environmental factors on both SBP and DBP using the
linear regression model (LRM) and the proposed parti-
tion-based score I (PBI). p Values of LRM were derived
from the asymptotic distribution of the regression
coefficient β3 and p values of PBI were computed from
107 permutations using global, local, or residual per-
mutation procedures. Table 3 lists the number of SNPs
with p values less than the Bonferroni-corrected signif-
icance level (7.9*10−7) for all interactions under con-
sideration. Compared with LRM, PBI identified many
additional significant SNPs, especially when testing the
G×E interaction effects with medicine. The reason, we
believe, is that the interaction modeled by LRM is
restricted to the linear form, whereas PBI is able to
capture nonlinear and complicated interaction pat-
terns. To confirm our hypothesis, we further analyzed

the SNP rs17206492, which was identified by PBI
(using any of the 3 permutation strategies) to have
strong G×Medicine interaction effect on DBP, but was
not selected by LRM. The left panel of Figure 1 shows
that the averaged values of DBP in individuals not car-
rying the minor allele (genotype 0) and in individuals
carrying the minor allele (genotype 1) are almost the
same, indicating that rs17206492 does not have strong
marginal effect. However, with the increase of medica-
tion usage, when the genotype is 1 (middle panel of
Figure 1), DBP first decreases and then increases; but
when the genotype is 0 (right panel of Figure 1), DBP
first increases and then decreases. This nonlinear inter-
action scheme cannot be detected by LRM, but is cap-
tured by our model-free test statistic PBI.

Effect of different permutation strategies
There are 20 pedigrees in the GAW18 data set. Both
the analysis of variance (ANOVA) test and the nonpara-
metric Kruskal-Wallis test indicate that the mean DBP
values of different pedigrees are different, whereas the
mean SBP values are the same (Table 4). When evaluat-
ing the p values of PBI, we performed 3 types of per-
mutation: global (GP), local (LP), and residual (RP)
permutations. Both LP and RP adjust for familial relat-
edness between individuals. For SBP, except for the
environmental factor age, the results from 3 permuta-
tion methods coincide substantially (see Table 3 and
Figure 2), which is consistent with the conclusion from
ANOVA and Kruskal-Wallis test. In contrast, for DBP,
the results of GP are quite different from the results of
LP or RP, especially when assessing the interaction
effect with medicine (see Table 3 and Figure 2). In this
situation, the results from LP or RP are more reliable
because they take into account the family dependence

Table 2 Partitions based on the summarized quantities of age, smoking status, or medicine

By age* By smoking By medicine

16~33.44 ®Partition 0
33.45~50.30 ®Partition 1
50.31~94.20 ®Partition 2

0 ® Partition 0
1 ® Partition 1

2,3,4 ® Partition 2

0 ® Partition 0
1 ® Partition 1

2,3,4 ® Partition 2
* The age group is divided by the 33% quantile (33.44) and 67% quantile (50.30). The minimum age is 16 and the maximum age is 94.2.

Table 3 Number of significant SNPs with p value less than 7.9*10−7 *

Environmental factor DBP SBP

LRM PBI
(GP)

PBI
(LP)

PBI
(RP)

LRM PBI
(GP)

PBI
(LP)

PBI
(RP)

Age 0 4 7 3 6 16 33 20

Smoke 0 6 3 3 0 0 0 0

Gender 0 42 37 36 0 1 1 1

Medicine 4 80 53 33 1 65 65 57

GP, Global permutation; LP, local permutation; LRM, linear regression model; PBI, partition-based I; RP, residual permutation.

*7.9*10−7 is the Bonferroni corrected p value.
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of the phenotype. In addition, LP tends to select more
markers than RP; this may be because the data violate
the assumption that {εij} have the same distribution.
Moreover, SNPs identified by LP and RP overlap con-
siderably and the consistency of results from these two
permutation strategies can be an indicator of true
signal.

Discussion
In this paper, we have proposed a partition-based
approach PBI to detect G×E interactions, which is non-
parametric and model-free. The test statistic is derived
from a partition-based measure I, and the interaction
information score IG×E is defined as the difference
between the total score IT and the maximum of the
marginal scores. Intuitively, if the genetic and the envir-
onmental factors have strong interaction effect, IT will
be far greater than both marginal scores; hence IG×E will
be positive and large. If not, IT will be no greater than
at least 1 of the marginal scores. Therefore, IG×E evalu-
ates the amount of influence of the G×E interactions on
the phenotype.

When applied to the real data set about hypertension
provided by GAW18, PBI identified many more markers
than the traditional linear regression method. Because
our approach is model-free, it is able to capture compli-
cated interaction patterns that are difficult to detect in
linear model. The significance of IG×E is evaluated by
permutation. LP and RP adjust effectively for the family
dependence of the phenotype. Despite the fact that the
proposed procedure selects more SNPs than linear
regression, there is very little experimental evidence of
G×E interactions for hypertension in the current litera-
ture to verify our findings. Therefore, biological studies
will be required to investigate our results. Modifications
of PBI have successfully identified gene-gene interac-
tions and constructed genetic networks for breast cancer
[6] and rheumatoid arthritis [7]. Moreover, PBI can be
extended to evaluate the interaction effects between rare
variants and environmental factors. Because of the low
frequencies of rare variants (<1%), we can apply a gene-
based approach by collapsing rare variants in a gene
[8-11] and creating partitions based on the collapsed
information.
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genotype = 1 (middle), and the medication effect when genotype is 0 (right).

Table 4 p Values for testing the pedigree dependence of
SBP and DBP

ANOVA test Kruskal-Wallis test

SBP 0.155 0.433

DBP 0.000625 0.0004226
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