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Abstract

Inferring population genetic structure from large-scale genotyping of single-nucleotide polymorphisms or variants
is an important technique for studying the history and distribution of extant human populations, but it is also a
very important tool for adjusting tests of association. However, the structures inferred depend on the minor allele
frequency of the variants; this is very important when considering the phenotypic association of rare variants.
Using the Genetic Analysis Workshop 18 data set for 142 unrelated individuals, which includes genotypes for many
rare variants, we study the following hypothesis: the difference in detected structure is the result of a “scale” effect;
that is, rare variants are likely to be shared only locally (smaller scale), while common variants can be spread over
longer distances. The result is similar to that of using kernel principal component analysis, as the bandwidth of the
kernel is changed. We show how different structures become evident as we consider rare or common variants.

Background
Inferring population genetic structure from large-scale
genotyping of single-nucleotide polymorphisms (SNPs) or
variants (SNVs), often performed using principal compo-
nent analysis (PCA) [1] or model-based clustering [2], is
an important technique for studying the history and distri-
bution of extant human populations [3], but it is also a
very important tool for adjusting tests of association [1,4].
Thanks to the increasing availability of sequencing

technology, it is possible now to identify very rare var-
iants and to type them on large samples of individuals,
extending the reach of the genome-wide association
study design. However, methods for detecting population
structure and for adjusting association tests accordingly,
should take into account the fact that the population
structures inferred depend on the minor allele frequency
(MAF) of the SNVs; this is very important when consid-
ering the phenotypic association of rare variants [5].
In this article we show evidence of different structures

at different MAF levels. We propose that the difference is
a result of a “scale” effect: rare variants are likely to be
shared only locally (smaller scale), whereas common

variants can be spread over longer distances. The result
is similar to that of using kernel principal component
analysis (KPCA) [6] because the bandwidth (ie, scale) of
the kernel is changed (De la Cruz and Susan Holmes,
work in preparation). This similarity between the beha-
vior of PCA at different MAF levels and KPCA at differ-
ent scales is further evidence, albeit circumstantial, of the
connection between MAF levels and scale.
Using the Genetic Analysis Workshop 18 (GAW18) data

set for 142 unrelated individuals, which includes genotypes
for many rare variants, we show how different structures
become evident as we consider rare or common variants
and how these structures transform smoothly as we
change the window of allowed MAF values. We suggest
that such a procedure provides a more complete picture
of the structure of the population.

Methods
We selected at random a set of 82,594 SNVs from the
odd-numbered autosomal chromosomes. The set is thin
enough that linkage disequilibrium caused solely by
proximity along the chromosome does not affect the
results substantially. We dropped 133 SNVs that are
monomorphic for the set of unrelated individuals, leaving
82,461 SNVs. We did not filter out those variants that
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appear in only 1 individual, even though they are less
informative about the relationships between different
individuals. It is important, though, to consider the num-
ber of such private variants for each individual, as that
might add a linear dimension related to the total number
of private variants. (Private here refers to a variant that
appears only once in the sample of 142 individuals. More
of these variants can only make an individual more differ-
ent from the others, whereas a shared variant can make 2
individuals more alike.)
We sorted the variants by MAF and selected a sliding

window of 900 SNVs, going from the rarest variants to
the most common. We used a total of 533 such win-
dows, which is considered a dense enough concentration
to make the continuity of the eigenvalues evident.
Because these windows overlapped substantially, the
principal component analyses performed on consecutive
windows are closely related.
The computation of the principal components was

performed via the singular value decomposition, after
centering and scaling [7].
Coloring of eigenvalue paths in Figure 1 was done

manually, and the color was extended only as far as it
seemed clearly defined. In Figure 2, some manual rotations
(changing signs, which are arbitrary for eigenvectors, or
switching principal component [PC]1 and PC2) were used
to make the relationship between panels clearer.
The theoretical argument for the persistence of the

eigenvalue-eigenvector relationships as the window slides
is given by perturbation theory [8]: Because 2 contiguous

windows share a large number of markers, the corre-
sponding variance-covariance matrices are close to each
other; consequently, small perturbations of the matrix
lead to a small change in the eigenvalues and eigenvec-
tors. The behavior is potentially more complicated when
eigenvalues cross, because at the crossing point, by defi-
nition, there are repeated eigenvalues. However, our
experiments suggest that the matching persists even after
such crossings in many cases.

Results
Figure 1 shows how different eigenvalues increase and
decrease in value as the MAF changes. In reality, the
eigendecompositions are computed independently, and it
is difficult to track automatically how each eigenvalue/
eigenvector evolves as MAF changes, but from the plot it
is clear that different features become more important at
different values of MAF. This is similar to what is
observed when the bandwidth (scale) of a kernel is chan-
ged in KPCA. Figure 2 contains 9 scatterplots of the top
2 principal components; these panels are labeled (1) to
(9), and the corresponding location in the MAF scale is
marked by vertical lines in Figure 1. Each panel corre-
sponds to the best 2-dimensional representation of the
genetic relationships between the unrelated individuals.
As we show here, these relationships are different
depending on whether we use rare variants (small MAF)
or more common variants. The MAF increases from
panel to panel, by rows. (The reversions in the plots cor-
respond to the arbitrary signs for the eigenvectors in an

Figure 1 Eigenvalues for different values of the MAF. Each curve shows the evolution of an eigenvalue as we slide the window of SNVs
used in PCA. The colors were selected manually to show likely continuation whenever there is a crossing of eigenvalues. For clarity, the plot
shows only 10 eigenvalues. The vertical dotted lines correspond to the locations that were selected for the scatterplot panels in Figure 2.
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eigendecomposition.) Notice how the structure in the
first panel is transformed into something different as we
progress through the panels.
For MAF values below 0.02, the dominant PCA fea-

tures are pairs of points that are set out from the rest
(see the Discussion for an explanation). One pairs is
picked out by a component that corresponds to the
eigenvalue path colored in green in Figure 1; that pair

can be easily located at the top of panels (1) through (4)
in Figure 2.
For MAF values above 0.02, the dominant feature cor-

responds to the eigenvalue path labeled in blue, except
for an eigenvalue path that suddenly rises to promi-
nence at MAF 0.09, even surpassing the blue curve
briefly, and disappears equally suddenly at MAF 0.15
(colored in red). The “blue” eigenvalues correspond to a

Figure 2 Scatterplot of the 2 top principal components, for different values of the MAF. The range of MAF of the 9000 SNVs used is
spelled out below each panel; also, the numbers in parenthesis match the vertical lines in Figure 1. The colors are based on the clusters that
appear in panes (7) and (8). Other panels mix these colors, so the cluster information is lost. Notice that only 2 components are used to facilitate
visualization; other components also contain information.
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continuous axis, represented vertically in panels (6)
through (9), while the “red” eigenvalues capture a clus-
tering in the population into 2 clusters (plus 2 outliers).
The colors in Figure 2 reflect this clustering; see the
Discussion for further details on this phenomenon.

Discussion
Panel (1) in Figure 2, corresponding to a MAF of 0.7%
to 1% (rare variants), shows a structure that is com-
monly seen in PCA plots of genotype data: “flares” that
extend from a central position. There are 3 clusters,
with 1 staying at the center and the other 2 radiating
away, with some individuals in the middle. As argued in
the previously mentioned work in progress by De la
Cruz and Holmes, this is likely related to the diversity
in each of the clusters. As one considers more common
SNVs, that is, higher values of MAF, a different struc-
ture arises in panels (6) through (8), a structure that
corresponds to the rise of the “red” eigenvalue in Figure
1, showing 2 clusters. Finally, a dominating linear
dimension, together with an orthogonal but smaller
dimension, appears toward the values of MAF of 40% to
50% (common variants). Notice that we use only 2 com-
ponents to facilitate visualization; other components can
contain important information, too, and the common
practice is to use the top 10 PCs when adjusting for
population structure.
The flares in panels (1) through (4) are dominated by

a pair of individuals at the tip. These are set out from
the rest of the group not because their genotype is dif-
ferent, but because they are more closely related to each
other than to the rest. In other words, each of these
“groups of 2” have reduced diversity, compared with the
overall group. Each of these pairs form a feature that
becomes more important when observed at a smaller
scale. This corresponds to the appropriate eigenvalues
rising to the top, and this pattern is evident in Figure 1.
As argued by Mathieson and McVean [5], it can be

problematic to perform a PCA-based adjustment for an
association test on rare alleles when the structure is
computed using common alleles. It is also likely that a
population structure estimated using a mix of common
and rare alleles will just mix the signals, diluting both
types of structures. Our analysis also shows that relying
on rare alleles tends to pick up the more closely related
pairs of individuals, which is unlikely to be useful in
adjusting for population structure.
The most intriguing feature to come out of our analy-

sis is the separation in clusters that happens for values
of MAF between 0.09 and 0.15. This feature is still pre-
sent at other nearby frequencies, but the corresponding
eigenvalue drops fast below the others. This clustering is
not an artifact of the SNVs selected: When using a

denser panel extracted from chromosome 11, the same
feature arises, in the same furtive way (data not shown).
It should be noted that this clustering does not become
apparent when performing PCA using a panel of SNVs
of all MAFs, or when restricted to common variants
(MAF >0.05). Indeed, even logistic regression using the
top 10 PCs does a poor job of replicating the separation
of the clusters (Figure 3). In other words, our multifre-
quency analysis (which can be considered multiscale)
uncovers important features that a single mixed-fre-
quency analysis misses.
We tried to match the cluster to the available pheno-

typic data, but none of the following factors matched:
sex, status as sequenced versus genotyped-by-chip-plus-
imputation, or pedigree membership. (Because this sam-
ple was obtained from an admixed population, it is pos-
sible that this phenomenon is a consequence of
admixture; however, we do not have data on the ances-
try proportions of the individuals.) Thus, the true nature
of the clustering remains a mystery and should be taken
into account when analyzing the data for disease asso-
ciations, possibly by including a component in the
adjustment that separates the clusters, or by checking
any potential discoveries a posteriori for unequal distri-
bution between the 2 clusters.
This is an interesting question: If two individuals share

a very rare variant, not only are they likely to be from
the same locality, but they are also likely to be some-
what related. If this is the case, they will tend to share a
higher proportion of common variants than other pairs
of individuals. Why then would an analysis based on
common variants not give the same information as one
based on rare variants? A set of top PCs derived from
common markers and the whole sample would pick up
only large, continent-wide trends. A PC might pick up
local correlation, but it would have a small eigenvalue.
There is an important consequence of the local nature

of the components obtained from rare variants: many
components might be needed to fully describe the popu-
lation structure at the given scale. As an illustration, con-
sider the following situation: Two components, derived
from common markers, can be enough to capture the
main genetic geographical structure on a continent (say,
a north-south component and an east-west component).
However, if we use components derived from rare alleles,
being able to discriminate between neighboring villages,
we would need a large number of components to distin-
guish all the villages. Thus, the following recommenda-
tion can be made: Instead of incorporating a large
number of PCs derived from rare variants into the regres-
sion tests of association, one should check any discov-
eries a posteriori for the possibility of spurious
association with one or more of those PCs.
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Conclusions
We believe that a considerable amount of information can
be gained by exploring the population structure at differ-
ent values of MAF. Using rarer variants corresponds to
looking at structures that arise at smaller scales, because
rare variants are likely to be shared between individuals
located near each other, whereas common variants can be
shared at longer distances. We posit that population
genetic structure is a multiscale phenomenon, and that to
elucidate behaviors at different scales, it is useful to con-
sider sets of variants grouped by MAF.
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Figure 3 Attempt to recover the clusters observed for MAF between 0.09 and 0.15 (see Figure 1, panels 7 and 8) by means of a single PCA
analysis using all the SNVs (bottom panel) or all the common variants (SNVs with MAF >0.05, top panel). We performed logistic regression using
cluster membership as the response, and using the top 10 PCs as the predictors. The separation of the clusters is very poor, indicating that the
top 10 PCs commonly used in genome-wide association studies in adjusting for population structure fail to uncover the clustering observed
using narrow frequency windows.
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