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Abstract

The primary goal of genome-wide association studies is to determine which genetic markers are associated with
genetic traits, most commonly human diseases. As a result of the “large p, small n“ nature of genome-wide
association study data sets, and especially because of the collinearity due to linkage disequilibrium, multivariate
regression results in an ill-posed problem. To overcome these obstacles, we propose preprocessing single-
nucleotide polymorphisms to adjust for linkage disequilibrium, and a novel Bayesian statistical model that exploits
a hierarchical structure between single-nucleotide polymorphisms and genes. We obtain posterior samples using a
hybrid Metropolis-within-Gibbs sampler, and further conduct inference on single-nucleotide polymorphism and
gene associations using centroid estimation. Finally, we illustrate the proposed model and estimation procedure
and discuss results obtained on the data provided for the Genetic Analysis Workshop 18.

Background
In genome-wide association studies (GWAS), we infer
which single-nucleotide polymorphisms (SNPs) are asso-
ciated with a trait. We cast this problem as variable selec-
tion; however, because the number of observations in a
GWAS data set, n, is typically much smaller than the
number of SNPs, p, this is a “large p, small n“ problem
[1]. This problem is aggravated by the computational
cost of trying to fit a complex statistical model involving
hundreds of thousands of SNPs. As a result, few publica-
tions have incorporated interaction testing of GWAS
data [2]. Models that have been proposed include, but
are not limited to, simple logistic regression models that
only look for marginal effects [3], more complicated
logistic regression models that allow for interactions [4],
and nonlinear models [5]. Bayesian models have also
been explored as an effective way to reduce the curse of
dimensionality (eg, Ref. [6] and references therein). Our
objective is to supplement these models with one that
accounts for correlation in the model specification and
that can exploit SNP groupings within genes.

Methods
Latent genotypes
It is usual to assume that the genotype data X is known as
observed data and to define the likelihood of the trait
response y conditional on X. This can be problematic for
inference because X depends on minor allele frequencies
(MAFs), and elements of X can be highly correlated as a
result of linkage disequilibrium (LD). It is possible to
simulate genotypes by sampling and dichotomizing a ran-
dom vector from a multivariate normal distribution with a
zero mean vector and a covariance matrix that can be
computed from the correlation between SNPs [7]. We
propose modeling X as though it was generated in this
way; that is, we observe, in X, a correlated and categor-
ized–by allele frequencies–version of the latent genotypes,
which we denote Z. We model y using Z in place of X.

Approximation
Instead of obtaining latent genotypes for each marker
and individual, we settle with an approximation that
allows us to fit a model with many SNPs. Denoting the
continuous but correlated genotypes by U, we compute
Ûij = E

[
Uij|Xij

]
, and then, Ẑi = C−1Ûi, where C is the cor-

relation matrix. For now, C is estimated using the sample
correlation matrix.
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Hierarchical gene model
We assume that y is quantitative and depends on Z and
covariates V through a linear expectation:

yi|zi, vi,β , η, τ 2 ∼ ind. Normal
(
vTi η + zTi β , τ

2) , i = 1, ..., n

We define θj ∈ {0, 1} to indicate if the jth marker is
associated with the trait and want to use the posterior
distribution of each θj to make inference on which mar-
kers are most likely to be associated with the trait.
Using θ, we define a spike-and-slab prior on β,
βj|θj ∼ ind. θjNormal

(
0,σ 2) + (

1 − θj
)
δ0 (·), where δ0 (·)

is the Dirac delta function at zero [8]. We use
Normal

(
0, σ 2) as a prior for η, and integrate out β and η

to obtain a simpler likelihood:

y|Z, θ ∼ Normal
(
0, τ 2In + σ 2VVT + σ 2Z Diag (θ)ZT)

We are also interested in possible effects on SNPs as a
result of proximity to genes. These effects can be cap-
tured in our model by embedding a hierarchy: if γg is an
indicator for gene g being active, then we give a positive
or negative boost to the probability that a SNP is asso-
ciated based on the number of active genes that cover
it. We define random parameters ξ0, which indirectly
defines the prior probability for any SNP to be asso-
ciated with the trait, and ξ1, which accounts for a boost-
ing effect, and write the hierarchy as follows:

θj|γ ∼ Bernoulli

⎡
⎣logit−1

⎛
⎝ξ0 + ξ1

∑
g∈j

γ ∗
g

/
nj

⎞
⎠

⎤
⎦

where γg|α ∼ Bernoulli (α), γ ∗
g = 2γg − 1, nj is the

number of genes that cover θj, and α is the prior prob-
ability of a gene being active. To sample θ and γ from
their posterior distributions, we adopt a Gibbs sampling
procedure with Metropolis-Hastings steps to sample
from the posterior distributions of ξ0, ξ1, and α. After
checking for convergence, we use the centroid estimator
to estimate the posterior probability of association
(PPA) of the jth SNP, ψj, based on N samples from this

procedure as ψ̂j = P̂
(
θj = 1|y,Z)

=
N∑
s=1

θ
(s)
j /N, and simi-

larly for P
(
γg = 1|y,Z)

, for each gene g. By increasing
the “boost” parameter ξ1, we can place more weight on
the information from the gene level. This regularizes the
SNPs such that by tuning ξ1 we may adjust the PPA
level of separation between causal and noncausal SNPs.

Centroid estimator
An ubiquitous estimator in Bayesian inference is the maxi-

mum a posteriori (MAP) estimator, θ̂M = argmax
θ∈{0,1}p

P
(
θ |y,Z)

,

but θ̂M may correspond to a sharp peak in a multimodal

and structured posterior space that does not gather much
posterior mass around it. An estimator that is arguably
better suited for complex spaces is the centroid estimator,

θ̂C = argmax
θ̃∈{0,1}p

Eθ—y,X

[
H

(
θ , θ̃

)]
, where H (·, ·) is Hamming

distance. For unconstrained spaces such as ours, it can be
shown that θ̂C is a consensus estimator; that is,(
θ̂C

)
j
= I

[
P

(
θj = 1|y,Z)

> 0.5
]
. The centroid estimator

can be shown to be closer to the mean than to a mode of
the posterior space of SNP associations, and so offers a
better summary of the posterior distribution of θ[9].

Results
Using the GWAS data set provided for Genetic Analysis
Workshop 18 (GAW18), we modeled the first systolic
blood pressure measurements as y, treated the 64,780
SNPs on chromosome 3 with MAF >0 as X, and an inter-
cept term and sex as V. After eliminating individuals with
missing data, 132 unrelated individuals remained. As only
the real phenotypes were used, the analysis was performed
without any knowledge of a simulating model. To run the
model efficiently, we constructed 336 blocks such that the
breaking points were positioned where adjacent SNPs had
distance greater than 15,000 kilobases (kb). After a prior
sensitivity analysis, we set τ 2 = 300 to avoid selecting too
many or too few SNPs. We set the hyperparameters for ξ0
and ξ1 such that they had prior distributions of Uniform
(−6, −2) and Uniform (0, 5), respectively, and assigned a
prior beta distribution to α with stringent hyperparameters
so as to concentrate the probability distribution about a
low expected value of around 0.015, which corresponds to
expecting 5 blocks out of 336 total to have 1 active gene.
Table 1 presents the 5 SNPs with the largest estimates of
the PPA for both raw and latent genotypes, and Figure 1
depicts the results of the centroid estimator. The red dots
(raw genotypes) in Figure 1 follow a pattern similar to
p values in Manhattan plots; a SNP with a high PPA is
surrounded by SNPs with relatively higher PPA. The blue

Table 1 Top 5 SNPs for original raw (normal text) and
latent genotypes (bold)

SNP Position MAF SNP PPA Gene Gene PPA

rs17688430 62458083 0.16 0.95 CADPS 0.012

rs7616789 27024158 0.23 0.73 – –

rs1565471 72736592 0.43 0.70 – –

rs3773282 13630307 0.29 0.58 FBLN2 0.006

rs13068005 192388678 0.47 0.50 FGF12 0.022

rs10935047 132815378 0.38 0.80 TMEM108 0.016

rs9872284 167951681 0.03 0.65 – –

rs3856621 24566228 0.40 0.39 – –

rs7631163 132837961 0.44 0.14 TMEM108 0.016

rs774952 98919271 0.04 0.12 – –
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Figure 1 Posterior probability of association (PPA) of SNPs on chromosome 3. The top 10 highest PPA have opaque dots (genotypes: raw
in red, latent in blue).

Figure 2 Expected values of the posterior distributions of ξ0, ξ1, and α. Histograms of estimates across all windows (genotypes: raw on
top, latent on bottom).
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dots, on the other hand, do not show this pattern because
the latent genotypes have been decorrelated. Moreover, we
observe that 90.4% of the SNPs have a latent genotype
PPA smaller than their raw genotype PPA. Figure 2 shows
histograms of the estimated expected values of the poster-
ior distributions of ξ0, ξ1, and α. The positive effect of
using the latent genotypes as indicated by the smaller
values of ξ0 and the larger values of ξ1 is that, a priori, the
SNPs have a lower PPA, and so gene effects are more
cleanly observed. When using the raw genotypes, the SNP
with the highest PPA is intronic to the CADPS gene. This
gene interacts with the DRD2 gene, which is related to the
negative regulation of blood pressure [10]. We observe
another SNP intronic to a gene, FBLN2, that may also be
involved in the regulation of blood pressure [11]. The
latent genotypes with PPA above 0.5 are not located in
any genes with a known connection to blood pressure.

Conclusions
We presented a Bayesian variable selection approach that
performs joint inference for quantitative trait association
on collections of genetic markers while formally model-
ing gene effects through a hierarchical influence. In addi-
tion, we prescribe centroid estimators that are based on
posterior probabilities of association and thus enable a
direct interpretation of their values uniformly across stu-
dies without having to correct for multiple testing. We
also proposed the novel use of latent genotypes as a way
to account for SNP correlations caused by LD. We
believe that this method offers a reasonably accurate and
flexible assumption because genotypes are corrected
directly in the model instead of considered in the estima-
tion procedure, as, for example, as kernel weights in the
sequence kernel association test (SKAT) [12]. However,
unfortunately, we were not able to find meaningful
effects in the GAW18 data set when using latent geno-
types that would point to interesting genes. This outcome
can be explained by many factors, including a low sample
size, an inaccurate representation of the correlation
across markers, and a poor choice of SNP blocks, and
thus warrants further investigation. Moreover, a more
thorough prior sensitivity analysis would recommend a
less stringent distribution for some hyperparameters,
mainly α, that would favor more genes to be active.
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