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Abstract

To avoid inflated type I error and reduced power in genetic association studies, it is necessary to adjust properly
for population stratification and known/unknown subject relatedness. It would be interesting to compare the
performance of a principal component-based approach with a linear mixed model. Furthermore, with the
availability of genome-wide sequencing data, the question of whether it is preferable to use common variants or
rare variants for such an adjustment remains largely unknown. In this paper, we use the Genetic Analysis Workshop
18 data to empirically investigate these issues. We consider both a quantitative trait and a binary trait.

Background
In genetic association studies, population stratification and
known or cryptic relatedness are always issues. If not sui-
tably accounted for, these may cause inflated type I errors
and reduced power. A popular approach to adjusting for
population stratification is to construct principal compo-
nents (PCs) from some similarity matrix for the samples
and to include the PCs as covariates in a regression model
[1]. This is referred to as a PC-based approach. However,
it is thought that these approaches “do not model family
structure or cryptic relatedness” [2]. A more general, and
perhaps more powerful, approach is to apply linear mixed
models (LMMs) to account for both population stratifica-
tion and relatedness [3,4]. EMMAX software [5] has facili-
tated the implementation of LMM by using the identity-
by-state (IBS) matrix to capture the complex correlation
structure in the samples. As these methods are studied
intensely in genome-wise association studies (GWAS), a
natural question is how they will perform with sequencing
data. It is also of interest to investigate whether common
variants (CVs) with minor allele frequencies (MAFs) no
less than 0.05, or rare variants (RVs) with 0< MAF < 0.01,
should be used to infer the samples’ genetic similarities.
In this paper, we compare the PC-based approach

with LMM to determine which approach can better

control the inflation of type I error arising from corre-
lated samples. The association testing is carried out for
a quantitative trait and a binary trait in the Genetic
Analysis Workshop 18 (GAW18) family-based sequen-
cing data. For a complete comparison, we construct and
consider PCs from different similarity matrices: the sam-
ple covariance matrix and the IBS matrix. Finally, we
discuss the best choice of variants for constructing the
similarity matrix, which has been the subject of several
recent studies [6-8].

Methods
In the PC-based approach, for a given similarity matrix, we
obtain its m largest eigenvalues lj and the corresponding
eigenvectors vj for j = 1, ..., m and denote
Xm = (

√
λ1v1, . . . ,

√
λmvm). For a quantitative trait, we use

a linear regression model Y = b0 + Xmg + Zζ + gb + δ,
where δ ~ N (0, s2I). For a binary trait we adopt a logistic
model: Logit(E(Y )) = b0 + Xmg + Zζ + gb.
In the 2 models above, Y = (Y1,Y2, . . . ,Yn)′ is the

vector of the traits for n subjects. Z = (z1, z2, . . . , zn)′ is
the matrix of covariates, and g = (g1, g2, . . . , gn)′ is the
vector of the genotype scores for 1 or more variants to
be tested. We denote the method by which PCs are
obtained from the IBS matrix as PCA. IBS, and the
method by which PCs are obtained from the covariance
matrix as PCA.V.* Correspondence: zhan1447@umn.edu
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In an LMM, Y = b0 + Zζ + gb + u + δ, where Y , Z, and
g are defined as above, u is the random effect for other
polygenic effects and δ is the residual error. It is assumed
that δ ~ N(0, s2I) and u = (u1, u2, . . . , un)′ ∼ N(0, σ 2

g K),
where K is the IBS matrix. We use EMMAX [5] for para-
meter estimation and inference.
For hypothesis testing, PCA.V and PCA.IBS adopted

the Wald test and EMMAX adopted the F-test.

Results
We used the GAW18 sequencing data containing 959
individuals and 8,348,674 single nucleotide variants
(SNVs) across all 11 chromosomes, among which
2,791,923 SNVs were CVs and 3,977,003 were RVs. After
pruning by PLINK [9] using a sliding window of size 50,
moving step of 5 and r2 <5%, and filtering out those with
missing call >0.05, there were 63,157 CVs left. We ran-
domly selected 10,837 CVs from those to construct the
similarity matrix. The IBS matrix was obtained by
EMMAX, and the covariance matrix was obtained by the
R function cov() with “use = pairwise.complete.obs” to
utilize the maximum number of variants.
We used the measurements of systolic blood pressure

(SBP) at time point 1, SBP1, and the hypertension diagno-
sis at time point 1, HTN1. The former is a quantitative
trait and the latter is a binary trait. There are 855 samples
available. Gender, smoking, and age are the covariates.

Association test with CVs
We carried out single single-nucleotide polymorphism
(SNP) analysis on a set of 6228 CVs randomly selected

from all the pruned CVs. Based on the findings of pre-
vious GWAS that most of the SNPs were not signifi-
cantly associated with hypertension, we could assume
these 6228 CVs were null SNPs. Because some subjects
were from the same families and thus correlated, we
expected to observe an inflated type I error if we treated
the samples as independent. If the PC-based method or
LMM was effective in adjustment, the p values should
have followed a uniform distribution. This also meant
that the proportion of the tests with p value <0.05
should be close to 0.05 and the inflation factor l close
to 1; l is the inflation factor of p values estimated by
the function gcontrol2 in R package gap. It is calculated
as the ratio of the medians of the observed and expected
statistics, respectively.
Figure 1 shows that, without adjustment, for SBP1 the

observed p values deviate from the theoretical uniform
distribution (l = 1.14). For HTN1, the observed p values
seem to follow the uniform distribution (l = 0.94). This
observation might indicate a mild heritability in the
GAW18 data set.
Table 1 shows the quantiles of the association mapping

p values of SBP1 with adjustment. We can see the
p values are almost uniformly distributed. The propor-
tion of the p values <0.05, estimating the type I error
rates, is around 0.05 and of l’s around 1. Figure 2 shows
some difference between p values obtained from the 2
PC-based models and EMMAX. There are also differ-
ences in the estimated SNP effects, bˆs. However, both
the p values and bˆs from the 3 methods are highly
correlated.

Figure 1 Q-Q plots of p values without considering the correlation among samples
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We also apply the methods to the binary trait H N1.
Table 2 shows the p values follow a uniform distribution
after adjustment. Figure 3 shows that the correlations
between the p values or bˆs from the 3 methods are
weaker than those for SBP1. This contrast is partly a
result of the logistic link in the PC-based models differ-
ing from the identity link in the LMM.

CVs or RVs?
Lastly, we examine which type of variants, CVs or RVs,
are more capable of capturing the underlying sample
structure. For this purpose, we use PLINK to randomly
select 11,103 variants from 1,104,098 pruned RVs to
construct the covariance matrix or IBS matrix.

Table 3 shows the results of the association testing,
adjusted with PCs of the new similarity matrices based
on RVs. PCA.IBS does a satisfactory job of controlling
type I errors and ls in testing 6228 CVs for both SBP1
and HTN1. EMMAX is a little conservative for HTN1.
Interestingly, we can see a greater distinction between
PCA.V and PCA.IBS here than in the previous results,
where the similarity matrices were based on CVs. The
PCA.IBS is better than the PCA.V at controlling the
inflation.
Originally, the weaker performance of PCA.V based

on RVs was thought to be a result of insufficient inclu-
sion of PCs. Following the suggestion of Patterson et al
[1], we use the Tracy-Widom test to test how many PCs

Table 1 Summary statistics of p values for SBP1 by PCA.V, PCA.IBS, and EMMAX. The similarity matrix is based on CVs.

Method Min. 1st. Qu. Median Mean 3rd Qu. Max. % (p val <0.05) l

PCA.V 1.106e-05 0.232 0.486 0.491 0.750 1.000 0.053 1.068

PCA.IBS 5.022e-06 0.235 0.491 0.493 0.749 1.000 0.054 1.041

EMMAX 1.42e-05 0.254 0.516 0.508 0.758 1.000 0.043 0.974

The similarity matrix is based on CVs.

Figure 2 Comparison of PCA.V, PCA.IBS, and EMMAX in testing association between SBP1 and each of 6228 SNPs

Table 2 Summary statistics of p values for HTN1 by PCA.V, PCA.IBS, and EMMAX

Method Min. 1st. Qu. Median Mean 3rd Qu. Max. % (p val <0.05) l

PCA.V 1.457e-04 0.239 0.489 0.494 0.748 1.000 0.055 1.054

PCA.IBS 7.044e-05 0.239 0.492 0.493 0.746 1.000 0.056 1.039

EMMAX 2.831e-04 0.259 0.510 0.507 0.761 1.000 0.048 0.977

The similarity matrix is based on CVs.
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are necessary to be considered significant [2,8]. The test
shows that the top 210 PCs of the covariance matrix all
have p values smaller than 0.05. However, we fail to
obtain reasonable p values with 200 PCs included. This
might be because the model could not be fitted, given
the small sample size.
Alternatively, we turn to the scree plots (Figure 4) to

explain the disparity between the use of CVs and of RVs
for a similarity matrix. For the covariance matrix calcu-
lated with CVs, there are 458 eigenvalues >1, with the
top 25 PCs explaining 19.06% of the total variance; for
the IBS matrix, there are only 32 eigenvalues >1, and the
top 25 PCs explain 11.91% of the total variance. For the
covariance matrix calculated with RVs, there are 433
eigenvalues >1 with the top 25 PCs explaining 7.73% of
the total variance; for the IBS matrix, there is only 1
eigenvalue >1, with the top 25 PCs explaining 27.02% of
the total variance. In short, when using CVs for con-
structing the similarity matrix, the top 25 PCs of either
type can approximate the correlation structure equally
well. Although the top 25 PCs of the IBS matrix can still

preserve a large proportion of the variation, when using
RVs for the similarity matrix, the counterpart of the cov-
ariance matrix does a poorer job of approximation.

Conclusions
In this paper, we address 3 questions: (a) how the PC-
based approach and LMM perform in controlling type I
error for correlated samples; (b) whether the IBS or cov-
ariance matrix should be used to generate PCs; and (c)
whether CVs or RVs should be used to construct the
similarity matrix. Based on the association testing of
6228 almost uncorrelated CVs from the GAW18 data,
we find that PC-based models were capable of taking
into account the sample correlations and worked as well
as the LMM. This result is different from the claim
made in Price et al [2] that PC-based models do not
model family structure or cryptic relatedness. When
using CVs to construct the similarity matrix, the top
few PCs from the IBS matrix and the covariance matrix
yield similar results. But when using RVs, the top few
PCs from the IBS matrix are slightly better than those

Figure 3 Comparison of PCA.V, PCA.IBS, and EMMAX in testing association between HTN1 and each of 6228 SNPs

Table 3 Results of the association tests by PCA

% (p val <0.05) l

PCA.V PCA.IBS EMMAX PCA.V PCA.IBS EMMAX

SBP1 0.068 0.052 0.052 1.121 1.050 1.054

HTN1 0.062 0.049 0.049 1.080 1.000 0.980

The similarity matrix is based on RVs.
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from the covariance matrix. LMM implemented by
EMMAX is generally as effective as anticipated,
although sometimes it can be conservative.
One limitation in our study was that in GAW18 data,

there is no serious inflation in type I error for testing
HTN1, even without any adjustment. Although our stu-
dies show a positive answer, more studies might be
needed to confirm the effectiveness of a PC-based
model for testing the binary trait.
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Figure 4 Scree plots for the top 400 PCs of a similarity matrix based on (a) CVs or (b) RVs. The black line is for the covariance matrix and
the red (gray) line is for the IBS matrix.
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