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Abstract

Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association
test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic
effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal
for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data
that contains rare variants as the majority. By using Genetic Analysis Workshop 18 “dose” genetic data with
simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and
collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel
association test. The results show that the HC approach is preferred for detecting weak genetic effects.

Background
Whole genome sequencing (WGS) is able to reveal
complete genetic variations across the entire genome. It
is deemed as the hope of decoding the mystery of
genetic pathology to complex traits [1]. Comparing with
single-variant tests in WGS, association tests for
grouped variants potentially provide higher power for
detecting genetic factors associated with diseases. First,
because of small minor allele frequency (MAF), the
association of a single rare variant is likely weak and
unreliable [2]. One solution is to group and collapse the
genotype data of rare variants [3]. Second, simultaneous
analysis of multiple variants could better reveal genetic
factors that are jointly functional for the biological
mechanism of complex traits. Third, group-based tests
are statistically attractive. In fact, from the multiple
hypotheses testing perspective, finding the existence of a
signal somewhere in a group is much easier than finding
its exact location [4]. Therefore, it is more promising to
target the discovery of sets of variants rather than indi-
vidual variants.
To design appropriate association tests, it is critical to

understand the properties of the data and the putative

genetic variants. After the “lower fruits” have been picked
up, the remaining variants to be identified usually have
weak statistical associations with the response, because of
either low allelic effects or rare variations [5]. At the same
time, only a small proportion of candidates in WGS are
disease variants. For addressing such weak and sparse
genetic effects, the higher criticism (HC) procedure [4] has
been shown optimal in genome-wide association studies
(GWAS) [6]. However, whereas GWAS data mostly
contain common variants, WGS data mostly contain rare
variants. To apply HC to WGS data, proper grouping and
collapsing strategies must be applied before the associa-
tions are tested. In the meantime, the grouping and collap-
sing strategies could critically influence the performance of
association tests, and different tests may prefer different
strategies. By using WGS data, we systematically explored
a variety of common grouping and collapsing strategies
and found the recommended setups for HC. The power
comparisons of HC with other methods indicate that HC
is preferred for detecting weak genetic effects.

Methods
Association tests
The HC procedure was designed for multiple hypotheses
testing [7] and can be applied to test whether genetic
associations exist in a set of variants. Under the null
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hypothesis that there is no genetic association, the
p-value from the association test of each genetic variant
follows a uniform distribution. Let p(1) ≤ . . . ≤ p(n) be
the ordered p-values from n individual variants. Under
the null, p(i) has mean i/n. As a maximum of the nor-
malized empirical process, the HC statistic measures how
much the p-values depart from the uniform distribution:

HCn = max
1≤i≤

n

2
, p(i)≥1/n

√
n(i/n− p(i))√
p(i)(1 − p(i))

.

Because the HC statistic uses a set of p-values as input,
it is readily applicable for detecting genetic associations
for either quantitative or binary traits in either popula-
tion-based or family studies as long as the corresponding
p-values are appropriately obtained. Here we used the
two-tailed p-values to accommodate two directions of
genetic effects. In analyzing the GAW18 data, the original
genotype of common variants and the collapsed geno-
types of rare variants (see later discussion) were applied
to get p-values and thus the HC statistic.
The sequence kernel association test (SKAT) is a super-

vised test for the association between genetic variant
groups and a continuous or dichotomous trait while
accounting for covariates [8]. SKAT provides different
weighting strategies for variants. However, here we chose
the flat weight to fairly compare it with HC, for which
genotypes are collapsed by the equal-weight sum. This
“plain” setup helps us understand the statistical foundation
of these two tests. In analyzing the GAW18 data, we
applied the R package SKAT [9], and the original genotype
data for both rare and common variants were used as
the input of this package.
In the minimum p-value method (minP), each individual

variant within a group is tested, and the smallest p-value is
used to measure the significance of the group.

Grouping and collapsing strategies
We considered four strategies to group variants according
to fixed genome windows with lengths 10, 100, or 500
kbps and functional genes from the UCSC Known Gene
[10]. The advantage of the fixed window grouping is that
there is no overlap among the groups, the windows fully
cover the whole genome, and the number of variants in
the groups is more evenly distributed than those groups
by genes. The advantage of gene grouping is that func-
tional variants are likely concentrated in coding regions of
the genome, which actually motivated exome-sequencing
studies. However, there are difficulties caused by inconsis-
tent definitions of genes, varieties of transcript segments
and splicing sites, significantly different sizes of genes, and
overlaps among genes. The largest drawback of gene-
based grouping is that it ignores the majority of the gen-
ome that does not contain any genes. It is quite possible

that disease variants or mutations could be located outside
of genes.
A variant is defined as rare if its MAF is less than a

threshold. Here the MAFs were estimated by the propor-
tion of the minor alleles among the total observed alleles.
We considered either 0.01 or 0.05 as the threshold.
Within each window group, the rare variants allocated
between any adjacent common variants were collapsed by
two strategies: equal-weight sum or Madsen-Browning
(MB) weight sum [3] of the original genotypes. The MB
weight emphasizes the rare variants based on the rare
variant-common disease model [11].

Permutation test
For HC and minP, a permutation test is needed to
accommodate the different variant numbers and correla-
tion structures within different genome segment win-
dows. Specifically, for each genome segment window,
1000 permutations of the genotype data were made, and
test statistics were calculated. The empirical p-value for
a group window is the proportion of the permutation
statistics that are equal or more extreme than the corre-
sponding statistic calculated from data.

Results
Considering population-based studies, we included 142
independent individuals who have no missing genotype
to the data analysis. We used the WGS dose files of
chromosomes 1, 3, and 5 as the genotype data and the
systolic blood pressure (SBP) as the phenotype. We con-
sidered two concepts of statistical power. First, the
power indicates the ability of detecting overall true asso-
ciations. It was estimated by the true positive rate of
true association windows. Second, the power measures
the ability of detecting a specific variant group with a
specific genetic effect pattern. It was estimated by the
true positive rate of the 200 simulation replicates. The
knowledge of the simulated true variants was only used
for evaluating the power of the association test, not for
the design of the tests and data analysis.
We assessed the type I error control for HC under

various grouping and collapsing strategies. Figure 1
shows the quantile-quantile plots for HC p-values of
false windows on chromosome 3 based on 10-kbps fixed
windows for grouping variants. Certainly, the type I
error is well controlled because the observed p-values
are close to the expectation and the values of genomic
inflation factor λ [12] is near 1. We also evaluated the
type I error rate control under 100- and 500-k windows,
gene-based grouping, different MAF thresholds for
defining rare variants (0.01 or 0.05), and with equal or
MB weight in the collapsing process. Results indicate
good type I error rate control (not shown here because
of limited space).
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We compared the power of HC test for detecting true
association windows on chromosome 3 under different
grouping and collapsing strategies. The left panel in Fig-
ure 2 shows the power curves based on three sizes of
fixed windows and genes with equal weight collapsing of
rare variants. For large p-value cutoffs, bigger windows
have higher power. However, the 10-kbps window is
preferred when the p-value cutoff is less than 0.1, where
it is of more practical interest for controlling type I
errors appropriately. The middle panel in Figure 2
shows the comparison for power of detecting all true
10-kbps windows under different MAF thresholds for
defining rare variants and different weighting scheme

for collapsing rare variants. The smaller threshold 0.01
helps to get an improvement of the power when the p-
value cutoff is less than 0.05. It seems the MB weight
does not help much.
We compared the power of the above association tests

for detecting all true 10-kbps windows on chromosome
3, with equal-weight collapsing and MAF threshold 0.05
for rare variants. From the right panel of Figure 2, HC
and minP are similar in the range of small p-values.
However, minP is not good for weak effects because its
power curve drops quickly for larger p-value cut-offs.
Our power cure is essentially a receiver operating char-
acteristic curve if a full range of cutoffs in (0, 1) is used.
Regarding to the area under curve (AUC), HC has the
largest value (0.6555) followed by SKAT (0.6496) and
minP (0.6327).
Figure 3 shows the power of minP, HC, and SKAT for

detecting all true windows on chromosomes 1, 3, and 5
(with 10-kpbs windows, equal-weight collapsing, and
MAF 0.05 for rare variants). HC and minP have their
own advantages for different chromosomes at different
cutoffs, but HC performs consistently better than SKAT.
However, the power is low in general. Because HC is
supposed to be optimal for weak and sparse signals (at
least based on asymptotic argument) [6], the low-power
phenomenon likely indicates that the sample size (142
independent individuals) is still too small for statistical
association studies to detect weak genetic effects by
WGS data.
To study the capabilities of the association tests in

detecting specific signal patterns, we studied their
power (i.e., true positive rates) in detecting specific
windows over 200 simulation replicates. As illustrated
in Figure 4, there are four representative patterns of
the comparisons for the 85 true windows on chromo-

Figure 2 Power of higher criticism (HC) for detecting all true windows on chromosome 3. (A) Comparison among variant-grouping
strategies by fixed windows (10, 100, and 500 kbps) and genes. (B) Comparison among minor allele frequency thresholds for rare variants and
weighting strategies for collapsing rare variants. (C) Comparison among three association tests. MB, Madsen-Browning; minP, minimum p-value
method; SKAT, sequence kernel association test.

Figure 1 Quantile-quantile plot for p-values of higher criticism
(HC). p-Values of HC for false 10-kbps windows on chromosome 3
were calculated; rare variants were collapsed by equal-weight sum
of genotypes.
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some 3. In particular, 15 windows have HC more
powerful than SKAT (left two panels), 10 windows
have SKAT more powerful than HC (upper right
panel), and 60 windows have almost no power for any
tests (the lower right panel). For each comparison pat-
tern, we checked the signal patterns of the correspond-
ing windows. Roughly speaking, minP is likely the
most powerful if the windows contain a strong true
variant; SKAT is likely the best when the windows
contain more but weaker true variants; HC is likely the
best when the windows contain fewer and weaker true
variants. It is interesting to see that when minP is the
best, HC is better than SKAT; when SKAT is the best,
HC is also better than minP. Thus, HC has a balanced
performance for both strong and weak effects. For all
windows, the type I error rates of HC and minP were
well controlled (results are available on request).

Discussion
We compared the HC and SKAT at a “plain” setup with
equal weighting scheme and fixed windows, with no
bias in choosing variants engaged into the test proce-
dure. This helps us to understand the statistical founda-
tion of these two methods for fair comparison. HC is
likely preferred for weak and sparse signals and did

show stronger performance in this scenario according to
the WGS data and the GAW18 simulations. On the
other hand, both methods have great potential to
improve the power through, for example, including
environmental factors as covariates into the testing.
Several future works could be considered based on the

limitations of the current study. First, it would be nice
to further confirm the patterns of comparisons among
these association methods by simulated and real data
with much larger sample size. Second, asymptotic distri-
bution or larger permutations are needed for HC to
obtain more accurate p-values for genome-wide type I
error control. Third, more sophisticated collapsing stra-
tegies should be studied based on prior information of
genetic architectures. For example, we can consider
weighting based variants’ apparent effect sizes [13] or
data-driven weights [14]. We can also focus on the
effects from a subset of meaningful variants from pro-
tein-coding point of view [15] or according to evolution-
ary conservation and functional effects [16]. Last,
because the HC procedure is a p-value combination
approach, it can be flexibly applied to broader context,
such as for family data analysis based on mixed effect
models or for meta-analysis, which combines different
data resources or research results.

Figure 3 Power for detecting all true windows on chromosomes (chr) 1, 3, and 5. Window size was 10 kbps with equal weight for variants.
minP, minimum p-value method; SKAT, sequence kernel association test.
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Conclusions
We proposed a framework to apply the HC approach to
WGS data. Our analysis of GAW18 simulation data
shows that the accurate type I error control by HC is
not affected by various grouping and collapsing strate-
gies for rare variants. Our results show that smaller
grouping windows (e.g., 10 kbps) are preferred over lar-
ger windows or gene-based grouping. For collapsing
rare variants at a type I error rate less than 0.05, the
MAF threshold of 0.01 is superior to 0.05, and a MB-

weighted sum does not provide improvement over an
equal-weighted sum. HC likely performs better than
SKAT and the minP method in detecting weak and
sparse genetic effects.
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Figure 4 Comparison of power for detecting specific windows among three association tests. Power of detecting a specific window over
200 simulation replicates. Window size was 10 kbps with equal weight for collapsing rare variants. (A) Minimum p-value method (minP) is the
best. (B) Sequence kernel association test (SKAT) is the best. (C) Higher criticism (HC) is the best. (D) No power for any tests.

Xuan et al. BMC Proceedings 2014, 8(Suppl 1):S14
http://www.biomedcentral.com/1753-6561/8/S1/S14

Page 5 of 6



Acknowledgements
We are grateful to the National Institutes of Health (NIH) funding support for
GAW18 and for the student travel awards to JX and LY. We are grateful to
WPI Computing and Communications Center for computational support. The
GAW18 WGS data were provided by the T2D-GENES (Type 2 Diabetes
Genetic Exploration by Next-generation sequencing in Ethnic Samples)
Consortium, which is supported by NIH grants U01 DK085524, U01
DK085584, U01 DK085501, U01 DK085526, and U01 DK085545. The other
genetic and phenotypic data for GAW18 were provided by the San Antonio
Family Heart Study and San Antonio Family Diabetes/Gallbladder Study,
which are supported by NIH grants P01 HL045222, R01 DK047482, and R01
DK053889. The GAW is supported by NIH grant R01 GM031575.
This article has been published as part of BMC Proceedings Volume 8
Supplement 1, 2014: Genetic Analysis Workshop 18. The full contents of the
supplement are available online at http://www.biomedcentral.com/bmcproc/
supplements/8/S1. Publication charges for this supplement were funded by
the Texas Biomedical Research Institute.

Published: 17 June 2014

References
1. Wright C: Whole genome sequencing: applications and implications. J

Med Genet 2011, 48(suppl 1):S94.
2. Panagiotou OA, Evangelou E, Ioannidis JPA: Genome-wide significant

associations for variants with minor allele frequency of 5% or less–an
overview: a HuGE review. Am J Epidemiol 2010, 172:869-889.

3. Madsen BE, Browning SR: A groupwise association test for rare mutations
using a weighted sum statistic. PLoS Genet 2009, 5:e1000384.

4. Donoho D, Jin J: Higher criticism for detecting sparse heterogeneous
mixtures. Ann Stat 2004, 32:962-994.

5. Cambien F: Heritability, weak effects, and rare variants in genomewide
association studies. Clin Chem 2011, 57:1263-1266.

6. Wu Z, Sun Y, He S, Cho J, Zhao H, Jin J: Detection boundary and higher
criticism approach for sparse and weak genetic effects. Ann Appl Stat .

7. Tukey JW: T13 N: the higher criticism. Course notes, Stat 411 Princeton, NJ:
Princeton University; 1976.

8. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare-variant association
testing for sequencing data with the sequence kernel association test.
Am J Hum Genet 2011, 89:82-93.

9. Lee S, Miropolsky L, Wu M, Lee MSS: Package “SKAT.”. CRAN 2011 [http://
cran.r-project.org/web/packages/SKAT/index.html].

10. Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D: The UCSC
known genes. Bioinformatics 2006, 22:1036-1046.

11. Iyengar SK, Elston RC: The genetic basis of complex traits: rare variants or
“common gene, common disease"? Methods Mol Biol 2007, 376:71-84.

12. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, Smith AV,
Ingelsson E, O’Connell JR, Mangino M, et al: Genomic inflation factors
under polygenic inheritance. Eur J Hum Genet 2011, 19:807-812.

13. Ionita-Laza I, Buxbaum JD, Laird NM, Lange C: A new testing strategy to
identify rare variants with either risk or protective effect on disease.
PLoS Genet 2011, 7:e1001289.

14. Han F, Pan W: A data-adaptive sum test for disease association with
multiple common or rare variants. Hum Hered 2010, 70:42-54.

15. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR: A method and server for predicting
damaging missense mutations. Nat Methods 2010, 7:248-249.

16. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A: Detection of nonneutral
substitution rates on mammalian phylogenies. Genome Res 2010,
20:110-121.

doi:10.1186/1753-6561-8-S1-S14
Cite this article as: Xuan et al.: Higher criticism approach to detect rare
variants using whole genome sequencing data. BMC Proceedings 2014 8
(Suppl 1):S14.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Xuan et al. BMC Proceedings 2014, 8(Suppl 1):S14
http://www.biomedcentral.com/1753-6561/8/S1/S14

Page 6 of 6

http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.ncbi.nlm.nih.gov/pubmed/20876667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20876667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20876667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19214210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19214210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21712549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21712549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://cran.r-project.org/web/packages/SKAT/index.html
http://cran.r-project.org/web/packages/SKAT/index.html
http://www.ncbi.nlm.nih.gov/pubmed/16500937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16500937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17984539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17984539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21407268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21407268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21304886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21304886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20354512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20354512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19858363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19858363?dopt=Abstract

	Abstract
	Background
	Methods
	Association tests
	Grouping and collapsing strategies
	Permutation test

	Results
	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

