
PROCEEDINGS Open Access

BiCluE - Exact and heuristic algorithms for
weighted bi-cluster editing of biomedical data
Peng Sun1,2, Jiong Guo2, Jan Baumbach1,2*

From Great Lakes Bioinformatics Conference 2013
Pittsburgh, PA, USA. 14-16 May 2013

Abstract

Background: The explosion of biological data has dramatically reformed today’s biology research. The biggest
challenge to biologists and bioinformaticians is the integration and analysis of large quantity of data to provide
meaningful insights. One major problem is the combined analysis of data from different types. Bi-cluster editing, as
a special case of clustering, which partitions two different types of data simultaneously, might be used for several
biomedical scenarios. However, the underlying algorithmic problem is NP-hard.

Results: Here we contribute with BiCluE, a software package designed to solve the weighted bi-cluster editing
problem. It implements (1) an exact algorithm based on fixed-parameter tractability and (2) a polynomial-time
greedy heuristics based on solving the hardest part, edge deletions, first. We evaluated its performance on artificial
graphs. Afterwards we exemplarily applied our implementation on real world biomedical data, GWAS data in this
case. BiCluE generally works on any kind of data types that can be modeled as (weighted or unweighted)
bipartite graphs.

Conclusions: To our knowledge, this is the first software package solving the weighted bi-cluster editing problem.
BiCluE as well as the supplementary results are available online at http://biclue.mpi-inf.mpg.de.

Introduction
Background
The enormous amount of available (sequential) data
from laboratories around the world has greatly shifted
the focus of biologically motivated studies. For instance,
GenBank, as the largest database of genes, now stores
over 197,000,000 sequences of more than 380,000
organisms [1]. UniProtKb/Swiss-Prot provides a data-
base containing more than 53,000 annotated sequences,
extracted and integrated from 205,244 published refer-
ences and Protein Data Bank (PDB) has incorporated
over 78,400 molecule structures. Integrating, processing
and analyzing large quantities of data from various
sources have become the main challenge in modern
bioinformatics. The requirement of carefully designed
computational models and methodology increases

rapidly, in order to discover novel interrelations and
gain further insights. In our study, we focus on the
exact and heuristic algorithms that cluster data from dif-
ferent types simultaneously, i.e. so called “bi- cluster
editing”. A software package named BiCluE containing
an exact algorithm and a heuristic algorithm is available
for downloading http://biclue.mpi-inf.mpg.de. We test
and evaluate BiCluE on artificially generated data. After-
wards, we demonstrate its applicability to real-world
Genome-Wide Association Study data, also known as
GWAS. GWAS examines the genetic variants (geno-
types) of one species, aiming for searching associations
with a certain phenotypic trait. In one typical GWAS
project, millions of SNPs are investigated and statistical
tests are performed to verify significant associations
with the phenotypes. This is a typical example of a
bipartite data type, i.e. two types of data objects and a
measurement that finds relations between the instances
of two types. Traditional analysis of GWAS data associ-
ates only one pair of SNP and trait/disease in one

* Correspondence: jan.baumbach@mpi-inf.mpg.de
1Computational Systems Biology Group, Max Planck Institute for Informatics,
Campus E1.4, 66123 Saarbrücken, Germany
Full list of author information is available at the end of the article

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

© 2013 Sun et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://biclue.mpi-inf.mpg.de
http://biclue.mpi-inf.mpg.de
mailto:jan.baumbach@mpi-inf.mpg.de
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

statistical test. This methodology tends to have false
positives and false negatives and to overlook the joint
effects of moderate risk SNPs. Therefore, we changed
this strategy, forming “group to group” associations,
rather than the traditional “one to one” relations (Figure
1). In our previous study [2], a preliminary version of
exact algorithm was implemented. Now we bring for-
ward a newly designed heuristics, largely shortening the
running time without significant compromising the
accuracy. A software package was implemented to inte-
grate both two algorithms and make it more convenient
for people to use. Both two algorithms were applied to
the GWAS data set and were capable of dealing with all
of the 415 problem instances but two, which have been
too large (> 3,500 nodes). 86 putative new associations
were discovered and we hope our results can serve as a
guide for further investigations in the wet lab. In other
words, we seek to explain the joint effect of multiple
genotypes to multiple phenotypes by “virtually” adding/
removing associations such that bi-cliques emerge in the
underlying bipartite graph. Note that we chose GWAS
data as an intuitive real-world example for data that can
be modeled as bipartite graphs. Since BiCluE can be
applied to many different biomedical data types (see

Results section), the focus of this paper lies on the exact
fixed-parameter algorithm for weighted bi-cluster edit-
ing and on the edge deletion heuristics.

Cluster editing and bi-cluster editing
Clustering is a classical task in bioinformatics and com-
putational biology. It partitions a data set into different
clusters such that elements within a cluster are more
similar to each other than to those objects belonging to
different clusters, according to a certain criterion. Var-
ious clustering methods are used in every field of biolo-
gical studies, including functional genomics, protein
structure/sequence analyses and almost all types of net-
work analyses (e.g., transcription regulatory network,
protein-protein interaction networks) [3]. Some specific
types of clustering were designed for different scenarios.
For instance, the clustering of gene expression data
under different conditions, which can be modeled as a
bipartite graph [4], is hardly suitable for standard clus-
tering methods. Instead, one would like to cluster genes
and conditions simultaneously such that we see a con-
sistent “behavior”, i.e. so called bi-clustering.
Clustering and bi-clustering are very similar problems,

thereby sharing similar strategies. One of the common
approaches of solving the problems is to compute a
pair-wise similarity matrix and to choose a similarity
threshold for constructing the corresponding similarity
graphs. Such graphs are built according to the following
steps: (1) The vertices of the graph refer to the objects
(for instance, genes or conditions), and (2) an edge
between two objects is drawn if the similarity score
between two vertices is above a certain threshold [5].
We call two arbitrary vertices u and v “similar” when
the score is above a certain value, written as u ~ v.
However, the resulting graph is not necessarily transi-
tive, meaning for arbitrary three vertices uvw, u ~ v and
u ~ w does not necessarily imply v ~ w. As a result, we
aim to convert the preliminarily constructed graph into
a transitive graph, which is a disjoint union of cliques,
with minimal costs (minimal number of edge deletions/
insertions, for instance). Such a problem is named “clus-
ter editing”. The formal problem statement follows:
Let V be the set of vertices (objects) to be clustered

and uv be an unordered pair of elements in V , i.e.,

{u, v} ∈
(
V
2

)
. We then define the similarity between

two vertices as a symmetric function s :

(
V
2

)
® R. A

given threshold is then used to decide whether u and
v are “similar “ (if s(uv) ≥ threshold) or “not similar”
(if s(uv) <threshold). Let E = {uv : u ~ v} denote the
edge set of the similarity graph. Here in this study, self-
loops are not permitted.

Figure 1 Bipartite graph representation of GWAS data. Vertices
P1, P2, P3 represent “phenotype” and G1, G2, G3, G4 refer to
“genotype” (SNPs). Our BiCluE approach converts the intransitive
GWAS data graph into disjoint bi-cliques. One possible solution is
presented at the bottom: The insertion of edge P2 and G2 and the
deletion of the edge between P3 and G2.

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 2 of 9

The graph is called transitive, if it satisfies any of the
three equivalent conditions below:

• Every set of three vertices uvw ∈
(
V
3

)
satisfies:

uv Î E and vw Î E ⇒ uw Î E.
• No path of three vertices is allowed.
• Every disjoint component of G is is a clique. (A
clique is a complete graph.)

Given an input graph G = (V, E), one asks whether G
can be transformed into a transitive graph G′ =

(
V, E′) ,

by inserting and deleting edges. For each insertion
or deletion, we have a certain penalty depending on
s(uv). Let cost

(
G → G′) = s

(
E\E′) − s

(
E′\E)

denote
the cost function. Our task is to find a G′, such that
cost

(
G → G′)is minimized.

Bi-cluster editing, similar to “cluster editing”, is a mathe-
matical model of the “bi-clustering” problems, also serving
as a strategy of solving bi-clustering problems. The graphs
are built in the same way, with vertices referring to the
entities and edges representing similarities. However, the
resulting graph must be a bipartite graph. Bipartite graphs
are special graphs satisfying the following criteria: (1) the
vertices of the graph are divided into two subsets, and
(2) edges can only be defined between vertices belonging
to different subsets.
We consider a bipartite graph G = (V, E) transitive if

it satisfies any of the following equivalent conditions:

• For an arbitrary subset of four vertices,

uvwx ∈
(
V
4

)
, where u, w belong to the same sub-

set and v, x belong to the other, we have uv Î E, wv
Î E and wx Î E ⇒ ux Î E.
• No paths of 4 vertices can be found, i.e., for each

uvwx ∈
(
V
4

)
, where u, w belong to the same subset

and v, x belong to the other, we have |E ∩ {uv, wv,
ux, wx}| ≠ 3.
• G is a union of disjoint bi-cliques (i.e. complete
bipartite graphs).

Bi-cluster editing is similar to its counterpart, cluster
editing: We transform a given bipartite graph into a
union of disjoint bi-cliques by edge insertions and dele-
tions with minimal costs for these modifications. The
definition of cost

(
G → G′) is the same. Note that bi-

cluster editing, though related to biclustering (see [6]), is
different in concept, methodology and biomedical
applicability.

Problem statement
The weighted bi-cluster editing problem is defined as
follows: Given an undirected bipartite graph G = (V, E,

s), where s is a similarity function s :
(
V
2

)
→ R. Let G′

be a union of disjointed bi-cliques. Find one or all G′

such that cost
(
G → G′) is minimized.

The input to our algorithm is a graph G = (V, E, s),
with similarity function s(uv) ® R and a similarity
threshold. E denotes the set of the edges: E = {v1, v2 : s
(v1v2) > threshold}. The algorithm outputs a set of edi-
ted edges E* and a cost c* = cost(G ® (V, E\E* ∪ E*\E).
We assume that the input graph consists of only one

single connected component since we can apply the algo-
rithms on each connected component separately, without
loss of generality. An optimal solution of the bi-cluster
editing problem would never join separate components,
since we can always find a cheaper solution where all
separated components remain separated [7].
In this study, we use “P4” as the short from of “a

path of 4 vertices”. As mentioned above, a bipartite
graph is transitive if and only if it contains no
P4. Denote B(G) to be the set of all P4s, i.e.

B (G) = {uvwx ∈
(
V
4

)
| | E ∩ (uv, wv, ux, wx) | = 3}.

G is transitive if and only if B(G) = ∅.

Previous studies and results
It has been proven that both unweighted and weighted
bi-cluster editing problems are NP-hard [8]. Although
many studies focused on cluster editing [3,5,9], the
study of bipartite transitive graph projection is far from
complete. An algorithm based on graph module decom-
position for unweighted bi-cluster editing was developed
by F. Protti et al., with the time complexity of O(4k + |
V| + |E|) [10]. Later J. Guo et al. improved the running
time to O(3.24k + |E|), by a refined branching strategy
[7]. However, we still lack algorithms solving weighted
bi-cluster editing problem instances, which covers most
of the cases in real life.

Fixed-parameter algorithm
Fixed-parameter algorithm and fixed-parameter tract-
ability were first introduced by Downey and Fellows in
1990s as a methodology of solving NP-hard problems
more efficiently [11]. An NP-hard problem is called
“fixed-parameter tractable”, if it can be determined with
a running time complexity that increases polynomially
with input size and exponentially or worse with the
parameter k, namely O(f(k)·|I|c), where |I| is the input
size and c is a constant. Moreover, f must be a function
that only depends on k. Niedermeier gives a more

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 3 of 9

detailed introduction to the theories and applications of
fixed-parameter algorithms and fixed-parameter tract-
ability [12].

Our contributions
Here, we present BiCluE, a Java software package that
deals with weighted bi-cluster editing. BiCluE imple-
ments an exact algorithm based on fixed-parameter
tractability theory and a new faster running heuristic
algorithm based on optimal edge deletion estimation.
We regard the parameter k of the fixed-parameter algo-
rithm as the cost of edge modifications. Given a pro-
blem instance, the exact algorithm finds the optimal
solution with cost at most k, if there is such a solution.
Assuming |s(uv)|>1 for all possible u, v, our exact algo-
rithm finishes in O(4k) time, checking whether there is
an optimal solution or not, while the heuristic algorithm
needs O(|E|·(|E| + |V|2) + |V|3) time to output an
“approximate” optimal solution.
Although, we focus on the new algorithms here, we

evaluated our BiCluE approach on artificially generated
graphs. Afterwards, we exemplarily show that BiCluE
may be applied to real biomedical data by means of two
different GWAS data sets. In this intuitive setting of a
bipartite graph we used our weighted bi-cluster editing
algorithms to scan for new putative associations that can
be deduced from the resulting “group to group” relations.
We will discuss the new findings and hope that our
results can serve as guidelines for further statistical inves-
tigations and wet lab studies.

Methods
Fixed-parameter algorithm
Our fixed-parameter algorithm contains two important
parts: Data Reduction and Branching Strategy.
Data Reduction: The data reduction is a kind of pre-

processing of the fixed-parameter algorithm that reduces
the instance size by removing those parts of the pro-
blem instance that do not need to be repaired and
thereby do not need to be considered in the following
steps. We first recognize all the separate components as
individual input. Then the algorithm checks whether
each component is already a bi-clique or not. If this is
the case, then the algorithm removes the whole compo-
nent from the input and outputs it as a part of the solu-
tion. This procedure finishes within O(|V| + |E|) time.
Branching Strategy: Branching strategy refers to a

search tree procedure to search and edit the P4s using
edge insertions and deletions. We have 4 possibilities
to convert a P4 into bi-cliques: removing one of the
three edges, resulting in two bi-cliques, or complete
the P4 with one edge insertion (Figure 2). More
specifically:

Suppose uvwx is an arbitrary P4 and let (uv), (wv),
(wx) be the three edges in the P4. The following three
cases are checked recursively as shown in Figure 2a:

• Insert ux by setting the weight of ux to “permanent”
(Figure 2b)
• Delete uv by setting the weight of uv to “forbidden”
(Figure 2c)
• Delete wv by setting the weight of wv to “forbidden”
(Figure 2d)
• Delete wx by setting the weight of wx to “forbidden”
(Figure 2e)

The search tree procedure starts when a P4 is located.
Four branches are created for one P4 in the search tree;
each represents one of the editing possibilities. Then we
recursively visit the four branches one by one, performing
the corresponding edge insertions or deletions and
update k to k′ = k−(insertion or deletion cost). We imple-
ment the whole algorithm in a recursive manner. If the
editing behavior of a certain branch leads to k′ < 0,
then the corresponding branch is skipped. The algorithm
stops when the entire tree is visited, and returns the opti-
mal solution found. This branching strategy accepts a
worst case running time of O(4k).

Edge deletion heuristics
In the fixed-parameter algorithm, we are aiming for
repairing all the P4s to make G transitive. The repairing
behavior is either an edge insertion or edge deletion. It

Figure 2 The bi-cluster editing strategy based on P4-
branching. Blue dashed lines correspond to edge deletions and
red dashed lines correspond to edge insertions. Four possibilities of
repairing a P4 are presented: (b) Insertion of the missing edge ux;
(c) deletion of the edge uv; (d) deletion of the edge wv; and (e)
deletion of the edge wx.

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 4 of 9

is obvious that the difficult part of the problem is to
correctly locate the edge deletions, for the edge dele-
tions determine the number of resulting disjoint bi-cli-
ques. Therefore, it would be beneficial to find the most
promising positions of edge deletions first. Then edge
insertions can easily be carried out by inserting all the
edges required to make each disjoint component transi-
tive. This is the main idea behind our edge deletion
heuristic algorithm.
We define a function to score the edge removal candi-

dates and greedily delete the edge with highest score in
each step, until further deletions do not improve the
solution. For each P4 uvwx (where (uv), (wv), (wx) Î E),
we define deviation from transitivity of G, D(G) as:

D (G) =
∑

uvwx∈P4
min{|s (uv) |, | s (vw) |, | s (wx) |, | s (xu) |}

The score of edge deletions are computed as follows:
Let uv be an arbitrary edge in G = (V, E, s).
G′ = (V, E\ {uv} , s′} is G after the removal of uv,
where s′

(
xy

)
= s

(
xy

)
, except s′ (uv) = −∞ (uv set to

“forbidden”). Then we define:

�uv (G) = D (G) − D
(
G′) − s (uv)

as the transitivity improvement of edge uv where s(uv)
is the cost of edge deletion.
The edge deletion heuristic algorithm consists of three

functions: REMOVE_CULPRIT(G), TRANSITIVE_CLO-
SURE_COST(G) and EDGE_DEL_MAIN(G). REMOVE_-
CULPRIT(G) returns the edge with highest transitivity
improvement (argmaxuvÎE{Δuv(G)}) and removes it from
G; TRANSITIVE_CLOSURE_COST(G) returns the total
cost of all edge insertions required to convert G into a bi-
clique, assuming G is connected; EDGE_DEL_MAIN(G) is
the main function of the edge deletion heuristic.
The first invocation of REMOVE_CULPRIT(G) can be

finished in O(|E|·|V|2) time, since computing each Δuv(G)
can be finished in O(|V|2) time, for only those P4s that
contain uv are considered. The subsequent routine calls
require O(|V|2) time to update the scores of the edges
that were influenced by the deletion of uv, and finally
O(|E|) time to find the maximum scored edge. This
results in a total running time of O(|V|2 + |E|). TRANSI-
TIVE_CLOSURE_COST(G) sums up the cost for a tran-
sitive closure, accepting a running time of O(|V|2).
EDGE_DEL_MAIN(G) returns a solution object, con-

taining the edge modifications and the costs needed for
converting the input graph into a transitive one. We keep
the assumption that G is connected. The pseudo-code of
the EDGE_DEL_MAIN(G) is in the appendix.
Our edge deletion heuristics removes a specific edge

at most once across all recursions. Checking for con-
nected components requires O(|E| + |V|) time and

REMOVE_CULPRIT(G) requires O(|V|2 + |E|) time.
TRANSITIVE_CLOSURE_COST(G) takes O(|V|2) time
for each disjoint component. Therefore, the total run-
ning time of our algorithm is O(|E|(|E| + |V|2) + |V|3).

Results
Artificial graphs
The artificial graphs were generated as follows: Initially
we generate graphs consisting of n vertices; afterwards m
vertices are picked up (m Î [1, n]) and defined to be in
one bi-clique. Then the same procedure is carried out in
the remaining n−m vertices until there is no vertex left.
This random graph generating process gives us a graph
consisting of random numbers of clusters of random
sizes. The edge weights are obtained from two different
Gaussian distributions N (μintra, σ 2

intra) and N (μinter,
σ 2
inter). The former distribution is to generate weights for

edges within the pre-designed bi-clusters and the latter
for “inter bi-cluster edges”, i.e. the edges between vertices
connecting different bi-clusters. We chose μ and s care-
fully such that the generated graphs are “almost transi-
tive” bipartite graphs. In our case, μintra = 21, μinter =
−21, sintra = sinter = 18. Thus the probability of finding a
“mistake edge” (an edge between vertices in different
bi-clusters or a missing edge between vertices in the
same bi-cluster) is about 0.123 for each pair.
The performance of the two algorithms on artificial

graphs are shown in Table 1. All running time mea-
surements were averaged over 5 repeats of the same-
sized graphs but with different edge structures. The

Table 1 Results of BiCluE on artificial graphs with a
varying numbers of vertices.

No. of
Vertices

No. of
Edges

Costs Running Times(s)

FP. EDH. FP. EDH.

10 [12,14] 23.786 25.575 0.0514 0.0704

20 [31,73] 114.024 114.934 0.0940 0.320

25 [42,101] 106.902 116.36 5.061 0.318

30 [74,190] 197.510 209.9 275.336 1.626

35 [126,170] 339.941 345.232 744.231 5.212

40 [144.326] 437.44 454.713 2183.653 6.578

50 [185,468] (–) 652.204 (–) 40.601

60 [266,635] (–) 943.902 (–) 260.957

70 [430,740] (–) 1397.101 (–) 376.010

80 [632,1341] (–) 1784.506 (–) 711.245

90 [936,1679] (–) 2243.770 (–) 1670.032

Costs and running times are averaged over 5 runs. For graphs with ≤ 40
vertices, we applied both algorithms. For graphs with > 40 vertices, the fixed-
parameter algorithm cannot finish within reasonable time. Hence, we only
report the performance of the edge deletion heuristics. Better costs and
running times are marked with bold font. Abbreviations: FP: fixed-parameter
algorithm; EDH: edge deletion heuristics

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 5 of 9

fixed-parameter algorithm is able to achieve very small
running times on small-sized and medium-sized graphs,
yet as the sizes of graphs grow, the performance of
fixed-parameter algorithm suffer, indicating the NP-
hardness of the underlying problem. When the number
of vertices exceeds 40 vertices, the fixed-parameter algo-
rithm cannot finish within reasonable time. On the
other hand, the edge deletion heuristic algorithm
requires significantly less time than the fixed-parameter
algorithm on bigger graphs. In terms of costs, the per-
formance of edge deletion heuristics is almost as good
as that of the fixed-parameter algorithm. In summary,
the heuristic finds solutions that are almost equally good
but is significantly faster. In Figure 3 we plot the run-
ning times of the fixed-parameter algorithm and the
edge deletion heuristic against the graph component
complexity (we define graph complexity as |V|·|E|).
Obviously, fixed-parameter is faster for small compo-
nents, but running times explode with growing input
graphs sizes. The edge deletion heuristics performs bet-
ter in terms of running time for medium-sized compo-
nents without much worse accuracy, i.e. much higher
modification costs.
We also generated 20 random graphs for different

probabilities of “inter-edges” and “intra-missing-edges”
(see above) ranging from 0.1 to 0.4 (5 repeats for each
probability). The average graph size was |V| = 40. The
solutions have been computed within one hour for all

graphs. The box plots in Figure 4 show the variation of
running time and costs for these graphs. With higher
“mistake probabilities”, the costs are expected to be
higher as well. For run times, however, we do not see
an increasing trend. Hence, our methods seem to be
generally robust for graphs of different structures and
complexities. The results are shown in Figure 4.

Genome wide association studies
To demonstrate the applicability of BiCluE to real bio-
medical data, we applied our software to a very intuitive
bipartite graph data set: GWAS data. It was retrieved
from two sources: (1) an online available database [13],
containing 56,412 significant SNP associations for 87
different diseases/traits, and (2) the National Human
Genome Research Institute (NHGRI) Catalog of Pub-
lished Genome Wide Association Studies, an online cat-
alog of SNP-traits from published GWASs, with 5,476
unique SNPs and 526 different diseases [14]. We defined
edge weights as s(uv) = −log(P), where P is the p-value
of the given associations. We used a threshold of 0.05,
corresponding to -log(0.05) = 1.301 in our graph-based
model.
The data from two different databases were not

merged due to incompatibility of terminology. The
resulting graphs contain 415 connected components in
total (136 from Johnson’s dataset and 279 from the
NHGRI dataset).
Both fixed-parameter algorithm and edge deletion

heuristics were applied separately on each disjoint con-
nected component. 413 of 415 components were solved
within 24 hours (99.5% of all the components). The
remaining two graph components have been too big to
be solved within 24 hours (one from NHGRI dataset
with |V| = 3, 609 and one from Johnson’s dataset with |
V| = 50, 161). Both BiCluE algorithms identified 86
putative associations, which were not detected as signifi-
cant in the two GWAS datasets. Table 2 shows the
distribution of the new associations and their corre-
sponding diseases/traits. We found 11 new targets to be
tested and evaluated for “Conduct disorder (case status)”
and “Isochemic Stroke”, followed by “Atrial fibrillation/
atrial flutter” and “Permanent tooth development”
(10 new candidate associations). For the details of the
putative associations, please refer to Additional File 1.
Note that our predictions depend on the user-given
similarity threshold, as those of any other clustering
tool. A full analysis of all the putative association is
beyond the scope of this study. Nevertheless, we exam-
ined the previous reports and literature for further sup-
ports. The SNP rs2548145 and rs3930234, which were
discovered in our study as putatively associated to
“Alcoholism (alcohol dependence factor score)” have
been reported as associated to “Alcoholism (alcohol

Figure 3 Running times of fixed-parameter algorithm and edge
deletion heuristics against graph complexities. The figure shows
the running times against graph complexities, i.e. |V|·|E| for artificial
graphs. Note the log-scaling of the axes. Colors: blue - edge
deletion heuristics, red - fixed-parameter algorithm.

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 6 of 9

use disorder factor score)” [15]. Moreover, the SNP
rs13376333, which was studied and found associated
with “Atrial fibrillation” [16], was found to be putatively
associated to “Atrial Flutter” and “Ischemic stroke”.
Another interesting result is related to the trait of
“tooth development": SNP rs9674544 and rs1956529,
reported as related to “primary tooth development” [17],
were found to be associated with “permanent tooth

development” in our study. Although the analyses above
could not replace experiment verifications as the
“ultimate” validation, yet it demonstrates that BiCluE
tends to cluster related traits together in one group,
which further implicates the correctness of the putative
associations. However, final wet lab examination is still
necessary and indispensable, though beyond the
scope of this paper. Here, our focus is the new BiCluE

Figure 4 The variation of costs and running times of our two algorithms on randomly generated input graphs with varying “mistake
edge probabilities”. (a),(b): The costs and running times for edge deletion heuristics. (c), (d): The costs and running times for fixed-parameter
algorithm.

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 7 of 9

algorithms that solve the weighted bipartite graph clus-
ter editing problem. As any other data partitioning
method it needs further statistical testing and parameter
adjustment, which is highly application-specific and
needs to be done with a certain intuition regarding the
nature of the real-world data sets.

Discussion and conclusion
Here, we presented BiCluE, a software package dedi-
cated to solve (weighted) bi-cluster editing problems. It
offers a fixed-parameter algorithm and an edge deletion
heuristic. We showed that BiCluE is able to solve med-
ium-sized bi-cluster editing problems within reasonable
times. The running times of fixed-parameter algorithm
explode when the input size exceeds a certain value
(40 vertices) while the edge deletion heuristic still works
fine for graphs of larger sizes.
We demonstrated BiCluE’s ability to cluster biomedi-

cal data with publicly available GWAS data sets. All but
two instances (99.5%) have been solved. We found 86
putative new associations. These newly discovered asso-
ciations might be useful as guidelines for further wet lab
studies. Since deleting/inserting edges (associations
between a phenotype and a SNP) does not directly affect
the association of other SNPs to that phenotype, we
implicitly imply a certain degree of independence
between SNPs, which might not be true. However, when

a set of SNPs is highly connected to a set of phenotypes,
it is likely that we may neglect inter-SNP dependencies,
since we concentrate on inserted edges (Table 2) emer-
ging from the “group-to-group” relationship in the
bipartite graph.
Moreover, there are plenty of other potential applica-

tions of BiCluE. In the future, we will apply BiCluE to
identify genetic variants that are responsible for certain
bacterial life styles, a task that will require simultaneous
clustering of both, genes and species. We will investigate
more such applications in the future.
Further investigation will focus on the improvement of

the performance of the fixed parameter algorithm. The
counterpart of bi-cluster editing on general graphs, clus-
ter editing, has been extensively studied. Thus it might
be interesting to compare the two problems, making use
of the ideas and techniques for cluster editing problems
on bi-cluster editing in order to achieve better running
times.

Implementation
BiCluE is implemented in JAVA 1.6 with support for
parallel multi-core computing. All measurements for the
evaluations were taken on Compute Clusters with 78
computing nodes consisting of 2 × Intel XEON E5430
2.66 Ghz (Quad-core) CPUs and 16 GB RAM.

Additional material

Additional file 1.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PS designed and implemented the algorithm. JG and JB supervised the
whole work. All authors contributed equally to the manuscript.

Acknowledgements
All authors wish to thank the Cluster of Excellence for Multimodal
Computing and Interaction of the German Research Foundation for financial
support. Cluster of Excellence for Multimodal Computing and Interaction of
the German Research Foundation.

Declaration
Funded by DFG Cluster of Excellence, MMCI.
This article has been published as part of BMC Proceedings Volume 7
Supplement 7, 2013: Proceedings of the Great Lakes Bioinformatics
Conference 2013. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcproc/supplements/7/S7.

Authors’ details
1Computational Systems Biology Group, Max Planck Institute for Informatics,
Campus E1.4, 66123 Saarbrücken, Germany. 2Cluster of Excellence for
Multimodal Computing and Interaction, Saarland University, Campus E1.7,
66123. Saarbrücken, Germany.

Published: 20 December 2013

Table 2 Putative associations obtained from bi-cluster
editing.

Traits/Disease No. of Putative
Associations

Conduct disorder (case status) * 11

Ischemic stroke 11

Atrial fibrillation/atrial flutter* 10

Permanent tooth development* 10

Conduct disorder (symptom count)* 9

Primary tooth development (time to first
tooth eruption)*

8

Cleft lip* 7

Primary tooth development (number of teeth)* 5

Alcoholism (alcohol dependence factor score)* 4

Plasma coagulation factors* 3

Vitamin D insufficiency* 3

Vitamin D levels* 2

Atrial fibrillation* 1

Nonsyndromic cleft lip with or without cleft
palate*

1

Plasma levels of Protein C* 1

Total 86

The items with “*” come from NHGRI dataset and the rest are from Johnson et
al.’s online dataset.

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 8 of 9

http://www.biomedcentral.com/content/supplementary/1753-6561-7-S7-S9-S1.PDF
http://www.biomedcentral.com/bmcproc/supplements/7/S7

References
1. Benson DA, Boguski MS, Lipman DJ, Ostell J: GenBank. Nucleic Acids Res

2011, 39:D32-D37.
2. Sun P, Guo J, Baumbach J: Integrated simultaneous analysis of different

biomedical data types with exact weighted bi-cluster editing. J Integr
Bioinform 2012, 17.

3. Wittkop T, Emig D, Lange S, Rahmann S, Ablrecht M, Morris JH, Böcker S,
Stoye J, Baumbach J: Partitioning Biological data with transitivity
clustering. Nat Methods 2010, 7(6):419-420.

4. Aluru S: Handbook of Computational Molecular Biology Boca Raton:
Chapman & Hall/CRC Computer & Information Science Series; 2004.

5. Wittkop T, Emig D, Truss A, Albrecht M, Böcker S, Baumbach J:
Comprehensive cluster analysis with Transitivity Clustering. Nat Protocols
2011, 6(3):285-295.

6. Preliç A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem W,
Hennig L, Thiele L, Zitzler E: A systematic comparison and evaluation of
biclustering methods for gene expression data. Bioinformatics 2006,
22(9):1122-1129.

7. Guo J, Hüffner F, Komusiewicz C, Zhang Y: Improved algorithms for bicluster
editing. In TAMC’08: Proceedings of the 5th international conference on Theory
and applications of models of computation Berlin, Heidelberg: Springer
Verlag; 2008.

8. Amit N: The bicluster graph editing problem. PhD thesis Tel Aviv
University School of Mathematical Sciences; 2004.

9. Guo J: A more effective linear kernelization for cluster editing. heor
Comp Sc 2009, 410:718-726.

10. Protti F, da Silva MD, Szwarcfiter JL: Applying modular decomposition to
paramterized bicluster editing. In IWPEC 2006 LNCS. Heidelberg: Springer;
Bodlaender HL, Langston MA 2006:.

11. Downey RG, Fellows MR: Parameterized Complexity Springer; 1999.
12. Niedermeier R: Invitation to Fixed-Parameter Algorithm Oxford University

Press; 2006.
13. Johnson AD, O’Donnell CJ: An open access database of genome-wide

association results. BMC Med Genet 2009, 10:6.
14. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,

Manolio TA: Potential etiologic and functional implications of genome
wide association loci for human diseases and traits. PNAS 2009, 10:1073.

15. Heath AC, Whitfield JB, Martin NG, Pergadia ML, Goate AM, Lind PA,
McEvoy BP, Schrage AJ, Grant JD, Chou YL, Zhu R, Henders AK, Medland SE,
Gordon SD, Nelson EC, Agrawal A, Nyholt DR, Bucholz KK, Madden PA,
Montgomery GW: A quantitative-trait genome-wide association study of
alcoholism risk in the community: findings and implications. Biol
Psychiatry 2011, 70(6):513-518.

16. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sinner MF,
de Bakker PI, Mueller M, Lubitz SA, Fox E, Darbar D, Smith NL, Smith JD,
Schnabel RB, Soliman EZ, Rice KM, Van Wagoner DR, Beckmann BM, van
Noord C, Wang K, Ehret GB, Rotter JI, Hazen SL, Steinbeck G, Smith AV,
Launer LJ, Harris TB, Makino S, Nelis M, Milan DJ, Perz S, Esko T, Kottgen A,
Moebus S, Newton-Cheh C, Li M, Mohlenkamp S, Wang TJ, Kao WH,
Vasan RS, Nothen MM, MacRae CA, Stricker BH, Hofman A, Uitterlinden AG,
Levy D, Boerwinkle E, Metspalu A, Topol EJ, Chakravarti A, Gudnason V,
Psaty BM, Roden DM, Meitinger T, Wichmann HE, Witteman JC, Barnard J,
Arking DE, Benjamin EJ, Heckbert SR, Kaab S: Common variants in KCNN3
are associated with lone atrial fibrillation. Nat Genet 2010, 42(3):240-244.

17. Pillas D, Hoggart CJ, Evans DM, O’Reilly PF, Sipila K, Lahdesmaki R,
Millwood IY, Kaakinen M, Netuveli G, Blane D, Charoen P, Sovio U, Pouta A,
Freimer N, Hartikainen AL, Laitinen J, Vaara S, Glaser B, Crawford P,
Timpson NJ, Ring SM, Deng G, Zhang W, McCarthy MI, Deloukas P,
Peltonen L, Elliott P, Coin LJ, Smith GD, Jarvelin MR: Genome-wide
association study reveals multiple loci associated with primary tooth
development during infancy. PLoS Genet 2010, 6(2):e1000856.

doi:10.1186/1753-6561-7-S7-S9
Cite this article as: Sun et al.: BiCluE - Exact and heuristic algorithms for
weighted bi-cluster editing of biomedical data. BMC Proceedings 2013 7
(Suppl 7):S9.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Sun et al. BMC Proceedings 2013, 7(Suppl 7):S9
http://www.biomedcentral.com/1753-6561/7/S7/S9

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/21071399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22802138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22802138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20508635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20508635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21372810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16500941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16500941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19161620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19161620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19474294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19474294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21529783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21529783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20173747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20173747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20195514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20195514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20195514?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Background
	Cluster editing and bi-cluster editing
	Problem statement
	Previous studies and results
	Fixed-parameter algorithm
	Our contributions

	Methods
	Fixed-parameter algorithm
	Edge deletion heuristics

	Results
	Artificial graphs
	Genome wide association studies

	Discussion and conclusion
	Implementation
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declaration
	Authors' details
	References

