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Abstract

Background: In the past several years, there has been increasing interest and enthusiasm in molecular biomarkers
as tools for early detection of cancer. Liquid chromatography tandem mass spectrometry (LC/MS/MS) based
plasma proteomics profiling technique is a promising technology platform to study candidate protein biomarkers
for early detection of cancer. Factors such as inherent variability, protein detectability limitation, and peptide
discovery biases among LC/MS/MS platforms have made the classification and prediction of proteomics profiles
challenging. Developing proteomics data analysis methods to identify multi-protein biomarker panels for breast
cancer diagnosis based on neural networks provides hope for improving both the sensitivity and the specificity of
candidate cancer biomarkers for early detection.

Results: In our previous method, we developed a Feed Forward Neural Network-based method to build the
classifier for plasma samples of breast cancer and then applied the classifier to predict blind dataset of breast
cancer. However, the optimal combination C* in our previous method was actually determined by applying the
trained FFNN on the testing set with the combination. Therefore, in this paper, we applied a three way data split
to the Feed Forward Neural Network for training, validation and testing based. We found that the prediction
performance of the FFNN model based on the three way data split outperforms our previous method and the
prediction performance is improved from (AUC = 0.8706, precision = 82.5%, accuracy = 82.5%, sensitivity = 82.5%,
specificity = 82.5% for the testing set) to (AUC = 0.895, precision = 86.84%, accuracy = 85%, sensitivity = 82.5%,
specificity = 87.5% for the testing set).

Conclusions: Further pathway analysis showed that the top three five-marker panels are associated with
complement and coagulation cascades, signaling, activation, and hemostasis, which are consistent with previous
findings. We believe the new approach is a better solution for multi-biomarker panel discovery and it can be
applied to other clinical proteomics.

Introduction
Breast cancer is the most common cancer among American
women, except for skin cancers. About 1 in 8 (12%) women
in the US will develop invasive breast cancer during their
lifetime. In 2012, an estimated 226, 870 new cases of inva-
sive breast cancer were expected to be diagnosed in women

in the U.S., along with 63,300 new cases of non-invasive (in
situ) breast cancer [1].
In recent years, functional genomics studies using DNA

Microarrays have been shown effective in differentiating
between breast cancer tissues and normal tissues by mea-
suring thousands of differentially expressed genes simul-
taneously [2-4]. However, early detection and treatment
of breast cancer is still challenging. One reason is that
obtaining tissue samples for microarray analysis can still
be difficult. Another reason is that genes are not directly
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involved in any physical functions. On the contrary, the
proteome are the real functional molecules and the keys
to understanding the development of cancer. Moreover,
the fact that breast cancer is a complex disease where
disease genes exhibit an increased tendency for their pro-
tein products to interact with one another [5,6], makes
the disease difficult to detect in early stages by single-
marker approach. A chance of success with a multi-
biomarker panel is higher than the simpler conventional
single-marker approach [6].
Recent advances in clinical proteomics technology, parti-

cularly liquid chromatography coupled tandem mass
spectrometry (LC-MS/MS) have enabled biomedical
researchers to characterize thousands of proteins in paral-
lel in biological samples. Using LC-MS/MS, it has become
possible to detect complex mixtures of proteins, peptides,
carbohydrates, DNA, drugs, and many other biologically
relevant molecules unique to disease processes [7]. A
modern mass spectrometry (MS) instrument consists of
three essential modules: an ion source module that can
transform molecules to be detected in a sample into
ionized fragments, a mass analyzer module that can sort
ions by their masses, charges, or shapes by applying elec-
tric and magnetic fields, and a detector module that can
measure the intensity or abundance of each ion fragment
separated earlier. Tandem mass spectrometry (MS/MS)
has additional analytical modules for bombarding peptide
ions into fragment peptide ions by pipelining two MS
modules together, therefore providing peptide sequencing
potentials for selected peptide ions in real time. LC-MS/
MS proteomics has been used to identify candidate mole-
cular biomarkers in a diverse range of samples, including
cells, tissues, serum/plasma, and other types of body fluids.
Due to the inherent high variability of both clinical sam-
ples and MS/MS instruments, it is still challenging to clas-
sify and predict proteomics profiles without an advanced
computational method.
Developing a proteomics data analysis method to iden-

tify multi-protein biomarker panels for breast cancer diag-
nosis based on neural networks, therefore, provides hope
for improving both the sensitivity and the specificity of
candidate disease biomarkers. Neural Networks have
several unique advantages and characteristics as research
tools for cancer prediction problems [8-12]. A very impor-
tant feature of these networks is their adaptive nature,
where “learning by example” replaces conventional “pro-
gramming by different cases” in solving problems [13].
The classification problem of breast cancer can be

restricted to consideration of the two-class problem with-
out loss of generality (breast cancer and normal). In the
early case study [13], we developed a Feed Forward
Neural Network-based method to build the classifier for
plasma samples of breast cancer and then applied the
classifier to predict blind dataset of breast cancer.

However, the optimal combination C* was actually deter-
mined by applying the trained Feed Forward Neural
Network (FFNN) on the testing set with the combination,
which maximizes the AUC. Therefore, in this paper, we
applied a three way data split to the FFNN for training,
validation and testing based. Our results show the predic-
tion performance of the FFNN model based on the three
way data split outperforms our previous method in the
earlier study [13].
We present the multi-marker panel development solu-

tion for early detection of breast cancer using the FFNN
model based on three way data split, and show how to
use it to model the classification and prediction problem
of early detection of breast cancer in plasma proteomics.

Materials and methods
Human plasma samples
Three batches of plasma samples were collected by the
Hoosier Oncology Group (HOG) (Indianapolis, IN,
USA), which we call Study A, Study B, and Study C.
Study A and Study B each contain 40 plasma samples
from women with breast cancer and 40 plasma samples
from healthy age-matched volunteer women as control.
Study C collects 40 plasma samples with 20 samples
from women diagnosed with breast cancer and 20 from
healthy volunteer woman. All samples in the three stu-
dies were collected with the same standard operating
procedure and stored in a central repository in Indiana-
polis, IN, USA. Study A, B and C were processed in the
same laboratory but at different times. Each sample was
analyzed in a single batch by mass spectrometry. The
demography and clinical distribution of breast cancer
stages for study A and B and C are comparable (Table 1),
although the total sample number of Study C is some-
what smaller than Study A and B. For example, all
patients involved in the three studies were diagnosed
with a stage II or earlier breast cancer. Figure 1 indicates
the degree of overlap among the proteins identified from
three data sets: Study A, B and C.

LC/MS/MS plasma proteomics analysis
Tryptic peptides were analyzed using Thermo-Fisher
Scientific linear ion-trap mass spectrometer (LTQ)

Table 1 Comparison of clinical distribution for study A
and B and C

Study A Study B Study C

Cancer type 30 INV 23 INV 15 INV

10 DCIS 8 DCIS 5 DCIS

9 unknown

ER+/PR+ 29 23 12

ER- PR- HER2+ 11 17 8

ER-/PR-/HER2-
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coupled with a Surveyor HPLC system (Thermo-Fisher
Scientific) to identify proteins. Peptides were first eluted
with a gradient from 5 to 45% Acetonitrile developed
over 120 minutes at a flow rate of 50 μL/min. Data were
collected in the triple-play mode (for example a) primary
MS scan, b) zoom scan, and c) MS/MS scan in Figure 2)
[14]. Lastly, the raw peak list data were generated by
XCalibur (version 2.0) using default parameters and

further analyzed by a label-free identification and quanti-
tative algorithm using default parameters described by
Higgs et al [15].
We performed the MS database search against the

International Protein Index (IPI, version 3.6, Figure 2d)
[16]. Protein quantification was carried out using the
same algorithm mentioned before [15]. Briefly, first all
extracted ion chromatograms (XIC) were aligned by
retention time. Each aligned peak was matched by parent
ion, charge state, daughter ions (MS/MS data) and reten-
tion time within a one-minute window. Then, the area-
under-the-curve (AUC) for each individually aligned
peak was measured, normalized, and compared for their
relative abundance using methods described in [14,15].

Linear mixed model
After transformation to a log2 scale and quantile normali-
zation [17], the protein intensity is the final quantity that
is fit by a separate analysis of variance (ANOVA) statisti-
cal model for each protein as yijk using the following:

yijk = μ + Tj + Sk + Ii + εijk,

Figure 1 Venn diagram of LC-MS/MS results.

Figure 2 Triple play mode (a) primary mass spectrum; b) zoom scan mass spectrum; c) MS/MS mass spectrum and d) protein
identification from MS/MS).
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where Ii ∼ N(0, σ 2
1 ), Sk ∼ N(0, σ 2

2 ), εjk ∼ N(0, σ 2) Here,
μ is the mean intensity value, Tj is the fixed group effect
(caused by the experimental conditions or treatments
being evaluated), Sk is the random sample effect (ran-
dom effects from either individual biological samples or
sample preparations), Ii is the random replicate effect
(random effects from replicate injections of the same
sample), and εijk is the within-groups errors. All of the
injections were in random order and the instrument was
operated by the same operator. All random effects are
assumed independent of each other and independent of
the within-group errors εijk.

Feed forward neural network
A generalized Feed Forward Neural Network (FFNN) has
three layers: input layer, hidden layer, and output layer and
is trained using a back propagation supervised training
algorithm. The input is used as activation for the input
layer and is propagated to the output layer. The received
output is then compared to the desired output and an error
value is calculated for each node in the output layer. The
weights on edges going into the output layer are adjusted
by a small amount relative to the error value. This error is
propagated backwards through the network to correct edge
weights at all levels. For example, Figure 3 described a feed

forward neural network with an input layer of 5 nodes (cor-
responding to a five-marker panel), a hidden layer of 3
nodes, and an output layer of two-variable encoding
scheme [healthy = (0,1), cancer = (1,0)]. We used empiri-
cally-derived rules-of-thumb, the most commonly relied
on, which is ‘the optimal size of the hidden layer is usually
between the size of the input and size of the output layers’
[18] to determinate the size of hidden layer.
The classification problem of breast cancer can be

restricted to consideration of the two-class problem with-
out loss of generality (breast cancer and normal). An
FFNN-based method [13] was used to develop the classi-
fier for plasma samples of breast cancer and then applied
the classifier to predict blind dataset of breast cancer.
Based on the FFNN-based method, however, we apply in
the paper a three way data split for training, validation
and testing, instead of directly using Study A as a training
set and Study B as a testing set in the [13]. Briefly, Study
A is used as the training set for learning to fit the para-
meters of the classifier, Study C as the validation set to
tune the parameters of the classifier, and Study B as the
testing set only to assess the performance of the fully-
trained classifier.
The enumeration method based on FFNN was built to

identify optimal biomarkers panel by us [13]. Similarly,

Figure 3 Feed forward neural network for five-biomarker panel.
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we designed an enumeration method based on the three
way data split and the FFNN to find the optimal classi-
fier, which measures the area under the curve (AUC)
for Receiver Operating Characteristics (ROC).
Each combination of N (N = 5 for five-marker panel)

out of all the 32 genes differentially expressed in the
training set is chosen as inputs to the FFNN. We select
N = 5 because 1) Li estimated that five or six genes
rather than 37 or 738 would be sufficient for the early
detection of breast cancer, based on colon cancer, leuke-
mia, and breast cancer [19], 2) we expect to achieve
high prediction accuracy for breast cancer with as few
genes as possible, and 3) we applied N = 5 to the pre-
diction of breast cancer in our previous study and
achieved satisfied prediction performance [13].
In this scheme, we first train the FFNN for each com-

bination in the training set with 5-fold cross-validation.
Then, we measure the AUC for each combination in the
validation set. Lastly, the optimal combination C* was
determined by

C∗ = argmaxCAUC(NETC,V),

where AUC is the area under the ROC curve of the
FFNN, C is combination of picking five out of the 32
genes, and V is the validation set.

Pathway analysis
Pathway analysis is performed using the following data-
bases: Integrated Pathway Analysis Database (IPAD)
http://bioinfo.hsc.unt.edu/ipad/[20].

Results and discussions
The plasma proteome sets from Study A, B, and C con-
tains 1423, 1389, and 1249 proteins, respectively. 246
proteins are in common between the three datasets.
After ANOVA analysis of the 246 proteins in the Study
A, we obtained 32 candidate markers in the training set
with pvalue < 0.01. No data from the testing set were uti-
lized in 1) identification of breast cancer markers or 2)
development of the FFNN model. The validation set was
used to tune the parameters of the FFNN model.
Based on an FFNN model that was built on all 60 mar-

kers differentially expressed in Study A and Study B, a
high performance (AUC = 0.8713, precision = 86.8%,
accuracy = 85%, sensitivity = 82.5%, specificity = 87.5% for
the training set; AUC = 0.8706, precision = 82.5%, accu-
racy = 82.5%, sensitivity = 82.5%, specificity = 82.5% for
the testing set) was obtained [13]. However, the optimal
combination C* was actually determined by applying the
trained FFNN on the testing set with the combination,
which maximizes the AUC. This step obtained an objec-
tive optimization with training set and testing set. There-
fore, in this paper, we applied the three way data split for
training, validation and testing and constructed an FFNN

for each combination of five out of the 32 markers and
trained with plasma samples derived from 40 women diag-
nosed with breast cancer and 40 control women in the
training set. The optimal combinations were obtained by
our optimization model based on the training set and vali-
dation set instead of the training set and testing set we
used in [13].
Training of the FFNN was performed using back pro-

pagation algorithm for two-variable encoding scheme,
because we had verified that the two-variable encoding
scheme performed better than single-variable encoding
scheme [13]. Five performance measurements: (1) Sensi-
tivity; (2) Specificity; (3) Precision; (4) Accuracy; and (5)
Area Under the Curve were computed in order to evalu-
ate the prediction performance of the FFNN.
In order to validate our prediction method, we com-

pared the ROCs for the best five 5-marker panel predic-
tions determined by our method with the ROCs for five
randomly chosen 5-marker panels from 32 candidate bio-
markers (Figure 4). As shown in the Figure 4, the top five
best predictions determined by our method (solid lines)
has better sensitivity-specificity-tradeoff performance than
those chosen randomly from 32 candidate biomarkers.
Table 2 shows the best three five-marker panels iden-

tified using the FFNN and the three way data split.
Gene C4BPA is in common between the best three five-
marker panels and gene SRCRB4D shows up twice.
Pathway analysis shows the pathways linked with the

best three five-marker panels are complement and coagu-
lation cascades, signaling, activation, and hemostasis
(Table 3), which are consistent with previous results we
found [6]. The confusion matrix and common perfor-
mance metrics for the training set, testing set, and valida-
tion set for the best five-marker panel is shown in the
Table 4. Although the final sensitivity is 82.5%, the same
as previous result in [13], the other performance measures
are improved. For example, the final accuracy increases
from 82.5% to 85% and the final specificity from 82.5% to
87.5% (Table 4). In addition, the AUC, a comprehensive
measurement of sensitivity and specificity, is improved
from 0.8706 to 0.895 (Figure 4). The prediction perfor-
mance of the FFNN model based on three way data split
(Study A as training set, Study B as testing set, and Study
C as validation set ) actually outperforms our previous
method in [13]. For example, the specificities are both
87.5% for the training sets. But after using the validation
set to tune the parameter of the model, the final specificity
for the testing set is improved from 82.5% to 87.5%.
We also compared the three way data split with other

combination such as mixing three datasets. When mixing
three datasets together, the best marker panel has the
same performance in the training mode (precision =
87.5%, accuracy = 87.5%, sensitivity = 87.5%, specificity =
87.5%), and a little higher performance in the testing
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Table 2 Best three five-marker panels identified

Panel SSE1 Accuracy

Training Set Testing Set Validation Set

C4BPA; HP; ORM1; SAMD9; SRCRB4D 3.3E-2 0.875 0.85 0.85

C4BPA; STBD1; DDX24; GRASP; CFI 5.6E-2 0.875 0.8375 0.85

C4BPA; CNO; FGG; SERPING1; SRCRB4D 1.9E-2 0.8625 0.85 0.85

Figure 4 A comparison of best five 5-marker panel ROCs (solid lines) and randomly chosen five (out of 32 candidates) 5-marker ROCs
(dotted lines).

Table 3 Pathway analysis for the best three five-marker panels.

PathwayID PathwayName Molecule

hsa04610 Complement and coagulation cascades FGG;SERPING1;C4BPA;CFI

h_intrinsicPathway Intrinsic Prothrombin Activation Pathway FGG;SERPING1

140877 Formation of Fibrin Clot (Clotting Cascade) FGG;SERPING1

114608 Platelet degranulation SERPING1;FGG

76005 Response to elevated platelet cytosolic Ca2+ SERPING1;FGG

hsa05133 Pertussis SERPING1;C4BPA

hsa05150 Staphylococcus aureus infection FGG;CFI

354194 GRB2:SOS provides linkage to MAPK signaling for Intergrins FGG

140875 Common Pathway FGG

76002 Platelet activation, signaling and aggregation FGG;SERPING1

372708 p130Cas linkage to MAPK signaling for integrins FGG

h_extrinsicPathway Extrinsic Prothrombin Activation Pathway FGG

h_fibrinolysisPathway Fibrinolysis Pathway FGG

140837 Intrinsic Pathway SERPING1

h_amiPathway Acute Myocardial Infarction FGG

200138 Beta2 integrin cell surface interactions FGG

200204 Ephrin B reverse signalling FGG

200037 CD40/CD40L signalling C4BPA

354192 Integrin alphaIIb beta3 signaling FGG
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mode (Study B as testing set, precision = 87.18%, accuracy =
86.25%, sensitivity = 85%, specificity = 87.5%). The reason
why the performance is higher in the testing mode is
because the mixture of three datasets already contains the
testing set and the testing set is not independent of the
training set. The three way data split method is more close
to real applications where testing data are blind or
unknown. The prediction performance of the testing set in
a three-way data split can better reflect the outcome in a
real application than other combination such as the mixture
of three datasets. We believe the new approach is a better
solution for multi-biomarker panel discovery and it can be
applied to other clinical proteomics.

Conclusions
We developed a Feed Forward Neural Network approach
that addressed a challenging multi-panel biomarker
development problem in the early detection of breast
cancer. The approach that we used combined the three
way data split with an optimization model of FFNN. We
found that the prediction performance of the FFNN
model combined with the three way data split outper-
forms our previous method. Further pathway analysis
showed that the top three five-marker panels are asso-
ciated with complement and coagulation cascades, signal-
ing, activation, and hemostasis, which are consistent with
previous findings. We believe the new method is a better
solution for multi-biomarker panel discovery and can

provide general guidance for future molecular medicine
multi-marker panel discovery applications in other dis-
eases. In the future, we will follow up with biological
experiments to validate these biomarkers with our
collaborators.
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