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Abstract

Background: Advancements in function prediction algorithms are enabling large scale computational annotation
for newly sequenced genomes. With the increase in the number of functionally well characterized proteins it has
been observed that there are many proteins involved in more than one function. These proteins characterized as
moonlighting proteins show varied functional behavior depending on the cell type, localization in the cell,
oligomerization, multiple binding sites, etc. The functional diversity shown by moonlighting proteins may have
significant impact on the traditional sequence based function prediction methods. Here we investigate how well
diverse functions of moonlighting proteins can be predicted by some existing function prediction methods.

Results: We have analyzed the performances of three major sequence based function prediction methods,
PSI-BLAST, the Protein Function Prediction (PFP), and the Extended Similarity Group (ESG) on predicting diverse
functions of moonlighting proteins. In predicting discrete functions of a set of 19 experimentally identified
moonlighting proteins, PFP showed overall highest recall among the three methods. Although ESG showed the
highest precision, its recall was lower than PSI-BLAST. Recall by PSI-BLAST greatly improved when BLOSUM45 was
used instead of BLOSUM62.

Conclusion: We have analyzed the performances of PFP, ESG, and PSI-BLAST in predicting the functional diversity
of moonlighting proteins. PFP shows overall better performance in predicting diverse moonlighting functions as
compared with PSI-BLAST and ESG. Recall by PSI-BLAST greatly improved when BLOSUM45 was used. This analysis
indicates that considering weakly similar sequences in prediction enhances the performance of sequence based
AFP methods in predicting functional diversity of moonlighting proteins. The current study will also motivate
development of novel computational frameworks for automatic identification of such proteins.

Background
The ever growing genome sequencing data and the over-
whelming development of genome sequencing technolo-
gies have boosted the development of computational
techniques and resources for protein function prediction
[1,2]. The traditional sequence based functional annota-
tion is based on the concept of homology [3,4] or motif/
domain searches [5-7]. Some recent Automatic Function
Prediction (AFP) methods such as PFP [8,9], ESG [10],
Gotcha [11], GOFigure [12], and ConFunc [13] use the

Gene Ontology (GO) hierarchy. On the other hand, SIF-
TER [14], FlowerPower [15] and Orthostrapper [16]
employ phylogenetic trees to transfer functions to target
genes in the evolutionary context. There are other func-
tion prediction methods that consider co-expression pat-
terns [17-21], 3D structures of proteins [22-30] as well as
protein-protein interaction networks [31-36].
Although existing AFP methods show numerous suc-

cessful predictions, moonlighting proteins may pose a
challenge as they are known to show more than one func-
tion that are diverse in nature [37-39]. The varied func-
tional behavior of these proteins can be due to localization
within the cell, expression by different cell types, binding
of a cofactor, oligomerization, complex formation, or
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multiple binding sites. Moonlighting proteins have been
found to be involved in molecular functions ranging from
diseases and disorders [16,40,41] to immune systems
[40,41].
In this work, we have analyzed the ability of existing

function prediction methods to correctly identify diverse
functions of experimentally identified moonlighting pro-
teins [42]. We have collected Gene Ontology (GO) term
annotations of these proteins from the UniProt database
and manually classified these annotations into two dis-
tinct functions. Based on the GO annotations, we have
examined the prediction performance of PSI-BLAST
and two other major sequence based function prediction
methods, the Protein Function Prediction (PFP) and the
Extended Similarity Group (ESG) method.
Overall, PFP showed higher average recall than PSI-

BLAST and ESG. ESG showed lower recall as compared
with PFP and PSI-BLAST, although it has a higher pre-
cision. The results suggest that the functional diversity
of the moonlighting proteins can be captured if weakly
similar sequences are considered among a broad range
of similar sequence sets.

Methods
Function prediction methods
In this section we briefly describe the three AFP meth-
ods we examined, PFP, ESG, and PSI-BLAST. Since PFP
[8,9] and ESG [10] have been published in earlier works,
please refer to the original works for more details.

Protein function prediction (PFP) algorithm
The PFP algorithm uses PSI-BLAST to obtain sequence
hits for a target sequence and predict GO function
annotations. PFP computes the score to GO term fa as
follows:

s(fa) =
N∑

i=1

Nfunc(i)∑

j=1

((− log(E value(i)) + b
)
P(fa|fj)), (1)

where N is the number of sequence hits considered in
the PSI-BLAST hits up to E-value of 100, Nfunc(i) is the
number of GO annotations for the sequence hit i,
E_value(i) is the PSI-BLAST E_value for the sequence
hit i, fj is the j-th annotation of the sequence hit i, and
constant b takes value 2 (= log10100) to keep the score
positive as retrieved sequences up to E_value of 100 are
used (-log(E_value(i)) + b = -log10(100) + 2 = 0, when
E_value = 100). The conditional probabilities P(fa|fj) is
to consider co-occurrence of GO terms in single
sequence annotation, which is computed as the ratio of
number of proteins co-annotated with GO terms fa and
fj as compared with genes annotated with the term fj.
To take into account the hierarchical structure of the
GO, PFP transfers the raw score to the parental terms

by computing the proportion of proteins annotated with
fa relative to all proteins that belong to the parental GO
term in the database. The score of a GO term computed
as the sum of the directly computed score by Eqn. 1 and
the ones from the parental propagation is called the raw
score.

Extended Similarity Group (ESG) algorithm
ESG recursively performs PSI-BLAST searches from
sequence hits obtained in the initial search from the tar-
get sequence, thereby performing multi-level exploration
of the sequence similarity space around the target pro-
tein. Each sequence hit in a search is assigned a weight
that is computed as the proportion of the -log(E_value)
of the sequence relative to the sum of -log(E_value)
from all the sequence hits considered in the search of
the same level. This weight is assigned for GO terms
annotating the sequence hit. The weights for GO terms
found in the second level search are computed in the
same fashion. Ultimately the score for a GO term is
computed as the total weight from the two levels of the
searches. The score for each GO term ranges from 0 to
1.0.

PSI-BLAST
PSI-BLAST search is performed with a default setting
with maximum of three iterations. Then the top hits
with an E_value score better than 0.01 that have annota-
tions is used for transferring annotation to the query
sequence. The BLAST predictions were ranked accord-
ing to -log(E_value)+2 for each of the prediction. In
addition to the default BLOSUM62, which is the default
amino acid similarity matrix, we also tested PSI-BLAST
performance using BLOSUM45 and BLOSUM30.

Results
We analyzed the performances of PFP, ESG, and PSI-
BLAST in predicting the functional diversity of 19
moonlighting proteins. The 19 moonlighting proteins
were taken from a review article [42]. These proteins
have two diverse and distinct functions. According to
the verbal description of the two diverse functions of
the proteins, we classified GO terms of these proteins in
UniProt into four classes: Terms that belong to the
major moonlighting function of the protein (Function
1); those which belong to the second moonlighting func-
tion (Function 2); terms which belong to both functions;
and terms that do not belong to either of the functions.
The list of the moonlighting proteins and their classified
GO terms are made available at http://kiharalab.org/
MoonlightingProtein_Dataset1/.
The raw score of PFP predictions has a large range of

values. Up to 1000 GO term predictions were sorted by
their raw score and plotted at an interval of 10. ESG
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predictions have a score range of 0 to 1.0, and 100 cut-
offs are used within this range. PSI-BLAST predictions
are ranked by -log(E_value)+2, and 100 score cutoffs are
used from 4 (E_value of 0.01) to 45 (E_value of 10-43).
To compare the prediction performances of the methods,
we computed precision and recall. Precision is defined as
TP/(TP+FP) and recall is defined as TP/(TP+FN), where
TP and FP denote true and false positive, respectively,
and FN denote false negative. All predictions by the three
methods are propagated to the root of the GO hierarchy,
so are the true annotations for the proteins.

Average Precision-Recall performance of PFP, ESG, and
PSI-BLAST
In Figure 1, the average precision and recall of PFP,
ESG, and PSI-BLAST for all the GO terms of the 19
moonlighting proteins are shown. It is shown that ESG
perform significantly better than the other two methods
in the recall range of 0.4 - 0.7. ESG has better precision
than BLAST within recall range of 0.37 - 0.66. PFP pre-
dictions ranked with raw score (Eq. 1 in Methods)
reaches the highest recall. In Figure 2 we show the per-
formance of the methods in terms of recall values at
100 cutoff scores (with all the GO annotations of the
proteins considered). It is apparent from this plot that
PFP showed higher recall than PSI-BLAST, and ESG.
ESG has lowest recall within the cutoff range of 0.09-
0.88.
In Figure 2B, the performance was evaluated where

only the GO annotations for the two moonlighting func-
tions (Function 1 and Function 2) are taken into
account as the target annotations. The prediction per-
formance for the moonlighting functions is essentially
the same as those measured for the all GO term annota-
tions (Figure 2A).

Recall at individual proteins
Next In Figure 3, we plotted the recall for the three meth-
ods for each of the 19 moonlighting proteins separately.
The cutoff of the prediction scores used are 0.5 for PFP,
0.35 for ESG, and E_value 0.01 for PSI-BLAST. The PFP
cutoff of 0.5 will yield the maximum of 500 GO term pre-
dictions. The score cutoff value of 0.35 for ESG is an opti-
mal cutoff score established in the previous work [10].
E_value 0.01 for PSI-BLAST is a standard cutoff used in
general for homology search. In addition to default PSI-
BLAST setting with BLOSUM62, we have also added the
predictions of two more versions of PSI-BLAST, with
BLOSUM45 and BLOSUM30 scoring matrices (BL+bls45
and BL+30 in Figure 3, respectively) to consider more
divergent sequences in the homology search.
When all the GO terms are considered (Figure 3A),

PFP showed higher recall than PSI-BLAST for almost all
the cases (except for proteins 2 and 4, which are ties).
ESG has similar recall of predictions as PSI-BLAST for
proteins 14 and 17, slightly higher recall for proteins 6,
12 and 15 than PSI-BLAST (BLOSUM62), and a lower
recall than PFP and PSI-BLAST for the rest of the pro-
teins. Recall by PSI-BLAST improved when BLOSUM45
was used. In the head-to-head comparison against PFP,
PSI-BLAST with BLOSUM45 showed a higher recall
than PFP for eight proteins while PFP had a higher recall
in ten cases (there was a tie). PSI-BLAST with BLO-
SUM30 failed to predict any GO terms above E_value of
0.01 for twelve proteins (Figure 3A). Overall, PFP and
PSI-BLAST with BLOSUM45 showed higher recall than
the rest of the methods. We see a similar performance
pattern for the five methods when we consider only the
GO terms belonging to moonlighting function 1 and
function 2 of the proteins (Figure 3B). Again PSI-BLAST
with BLOSUM45 showed comparable performance to
PFP. PSI-BLAST with BLOSUM45 had a higher recall
than PFP in seven cases while PFP was higher in ten
cases (again there was a tie).
These results indicate that the PFP can find moonlight-

ing GO terms that are missed by regular PSI-BLAST
searches for quite a lot of cases. The strength of PFP is
its coverage of a large number of sequences, by including
weakly similar sequences into consideration for annota-
tion transfer. On the other hand, ESG puts more weight
on the consensus sequences that have strong similarity
with the query protein among all the sequences that it
encounters along multiple iterations. Thus, although ESG
provides a higher precision on the predictions among all
three methods (Figure 1), it fails to detect the functional
variations in a number of cases. These results suggest
that the functional diversity of the moonlighting proteins
could be captured by taking weakly similar sequences
into consideration among a broad range of similar
sequences.

Figure 1 Precision-Recall of PFP, ESG, and PSI- BLAST.

Khan et al. BMC Proceedings 2012, 6(Suppl 7):S5
http://www.biomedcentral.com/1753-6561/6/S7/S5

Page 3 of 5



Conclusion
The identification of moonlighting functions of a protein
is important for automatic function predictions. We
have analyzed the performances of PFP, ESG, and PSI-
BLAST in predicting the functional diversity of moon-
lighting proteins. PFP shows overall better performance
in predicting diverse moonlighting functions as com-
pared with PSI-BLAST and ESG. Recall by PSI-BLAST
greatly improved when BLOSUM45 was used instead of
BLOSUM62. This analysis indicates that considering
weakly similar sequences in prediction enhances the
performance of sequence based AFP methods in predict-
ing functional diversity of moonlighting proteins.
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