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Abstract

Background: In recent years, many algorithms have been developed for network-based analysis of differential
gene expression in complex diseases. These algorithms use protein-protein interaction (PPI) networks as an
integrative framework and identify subnetworks that are coordinately dysregulated in the phenotype of interest.

Motivation: While such dysregulated subnetworks have demonstrated significant improvement over individual
gene markers for classifying phenotype, the current state-of-the-art in dysregulated subnetwork discovery is almost
exclusively limited to binary phenotype classes. However, many clinical applications require identification of
molecular markers for multiple classes.

Approach: We consider the problem of discovering groups of genes whose expression signatures can discriminate
multiple phenotype classes. We consider two alternate formulations of this problem (i) an all-vs-all approach that
aims to discover subnetworks distinguishing all classes, (ii) a one-vs-all approach that aims to discover subnetworks
distinguishing each class from the rest of the classes. For the one-vs-all formulation, we develop a set-cover based
algorithm, which aims to identify groups of genes such that at least one gene in the group exhibits differential
expression in the target class.

Results: We test the proposed algorithms in the context of predicting stages of colorectal cancer. Our results show
that the set-cover based algorithm identifying “stage-specific” subnetworks outperforms the all-vs-all approaches in
classification. We also investigate the merits of utilizing PPI networks in the search for multiple markers, and show
that, with correct parameter settings, network-guided search improves performance. Furthermore, we show that
assessing statistical significance when selecting features greatly improves classification performance.

Introduction
Genome-wide monitoring of mRNA expression, moni-
tored using DNA microarrays and more recently deep
sequencing, has proved quite useful in understanding
the mechanistic bases of complex human diseases.
Systematic analysis of differential gene expression in dif-
ferent phenotypic classes leads to identification of novel
biomarkers, which serve as features for phenotype classi-
fication, as well as targets for therapeutic intervention. In
previous studies, differential analysis of gene expression

led to identification of biomarkers for a range of complex
diseases, including Parkinson’s disease [1], neuroblastoma
[2], lung cancer [3] and breast cancer [4].
Traditional analyses generally take a univariate approach

to study gene expression and identify genes with signifi-
cant individual differential expression in the phenotype of
interest. However, such univariate approaches are often
limited in explaining the underlying mechanisms of com-
plex diseases, which arise from the interplay among multi-
ple genetic and environmental factors. For example, genes
that cooperate or complement each other in pathogenesis
may not necessarily be differentially expressed individually,
but exhibit coordinated dysregulation when considered
together.
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In order to address the shortcomings of the univariate
approaches, Chuang et al. develop an algorithm that
integrates gene expression data with protein-protein
interaction (PPI) networks to identify reproducible
breast cancer metastasis markers composed of multiple
interacting proteins (“dysregulated subnetworks”) [5].
They show that these subnetwork markers better predict
breast cancer metastasis as compared to individually
dysregulated genes. Motivated by the demonstrated pro-
mise of this approach, several other algorithms are
developed for network-based analysis of differential gene
expression. In particular, Chowdhury et al. develop a
set-cover based heuristic for identification of genes that
complement each other in discriminating phenotype and
control samples [6]. Phuong et al. further improve on
these algorithms by introducing a biclustering algorithm
that also accounts for the noise in PPI networks by
incorporating reliability scores for PPIs [7]. More
recently, recognizing the shortcomings of greedy algo-
rithms in identifying dysregulated subnetworks, Phuong
et al. introduce a color-coding based randomized algo-
rithm to identify subnetworks that are highly discrimi-
native of phenotype and control [8]. These methods are
also extended to the identification of subnetwork
expression signatures that can shed light into the regula-
tory logic of the relationship between the dysregulation
of multiple genes and the disease phenoype. In particu-
lar, Chowdury et al. identify subnetworks whose combi-
natorial expression states are indicative of phenotype by
using a branch-and-bound algorithm [9], Dutkowski
et al. grow network-guided forests by training decision
trees using interacting proteins [10].
All of the existing dysregulated subnetwork discovery

algorithms are designed and validated for binary pheno-
type classes (e.g. cancerous vs. non-cancerous, metastatic
vs. non-metastatic, drug responders vs. non-responders)
and prove to be promising in terms of accurate classifica-
tion of samples. However, many progressive diseases
such as glioblastoma, breast cancer and colorectal cancer
require identification of molecular markers for multiple
classes (such as the four stages in colorectal cancer
according to Dukes’ classification) for effective prognosis
and treatment. This implies the necessity of a framework
that can also work on datasets with more than two phe-
notype classes for network-based discovery of disease
markers. Although most of the existing algorithms can
be applied to multiple phenotype classes in principle, no
tool is readily available for this purpose. Furthermore,
subnetwork discovery on multi-class datasets requires
additional design choices and poses novel algorithmic
challenges. These choices include designing criteria to
evaluate the dysregulation of a subnetwork; i.e., are we
interested in identifying subnetworks that can distinguish
all classes from each other at once, or are we interested

in identifying subnetworks that serve as indicators for
specific classes. The algorithmic challenges, on the other
hand, include unproportionately distributed samples
across multiple classes. For these reasons, novel algo-
rithms are needed that are robust and can work with
datasets that are composed of different number of classes
and sample distributions.

Contributions of this study
In this article, we introduce novel algorithms for net-
work-based analysis of differential gene expression on
applications that involve multiple phenotype classes. As
an important application, we focus particularly on identi-
fying subnetworks that can discriminate different stages
of human colorectal cancer (CRC) according to Dukes’
classification. We first propose two formulations to gen-
eralize information-theoretic measures of subnetwork
dysregulation to multiple phenotype classes. These for-
mulations differ in terms of how the target subnetworks
discriminate phenotype classes from each other; namely
we establish information-theoretic criteria for all-vs-all
and one-vs-all discriminative subnetworks. Then, we
extend the set-cover based algorithm by Chowdury et al.
, NETCOVER, to identify one-vs-all discriminative sub-
networks [6]. We also introduce a framework for asses-
sing the statistical significance of the sub-networks
identified by the set-cover based algorithm. Using public
CRC datasets composed of samples labeled with Dukes’
four stages, we investigate the performance of the result-
ing algorithm, COBALT, in identifying subnetworks that
are useful in predicting the stages of colon cancer sam-
ples. In particular we perform systematic computational
experiments to investigate the following:

• We compare the performance of all-vs-all and one-
vs-all subnetworks in predicting phenotype and
show that one-vs-all discriminative subnetworks are
generally more reliable as features for classification.
• We investigate the effect of using the PPI network
to confine the space for searching groups of genes
that are coordinately dysregulated subnetworks. We
show that, while expansion of the search space
through consideration of indirect interactions
improve the classification performance of identified
subnetworks, this improvement saturates after a
point, demonstrating that PPI networks indeed pro-
vide a shortcut to the identification of dysregulated
groups of genes. We also show that our efficient set
cover based algorithm renders network-free search
feasible.
• We investigate the effect of using statistically sig-
nificant subnetworks (as opposed to high-scoring
subnetworks) as features for classification and show
that assessment of statistical significance facilitates
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identification of more useful subnetwork features for
classification.

In the next section, we start our discussion by propos-
ing two alternate information-theoretic formulations of
sub-network dysregulation. We also introduce our set-
cover based algorithm, COBALT, for the identification of
one-vs-all discriminative subnetworks and propose meth-
ods for assessing the statistical significance of the identi-
fied subnetworks. Subsequently, in Results Section, we
provide comprehensive experimental results on the clas-
sification performance of the subnetworks discovered by
COBALT in predicting the stage of CRC on two gene
expression datasets obtained from the Gene Expression
Omnibus. We conclude the paper in Conclusion Section.

Methods
In this section, we start by introducing the mathematical
background of the information-theoretic formulation of
coordinate dysregulation for a set of genes. Subsequently,
we propose two alternate approaches for generalizing this
notion to multiple phenotype classes. We then introduce
COBALT, our set-cover based algorithm that is specifically
designed to identify stage-specific discriminative subnet-
works. Finally, we introduce a framework for assessing the
statistical significance of the identified subnetworks, and
describe how these subnetworks can be utilized for classi-
fication of samples.

Dysregulation of subnetworks
For a given set V of genes and U of samples, let Ei Î
R|u| represent the properly normalized gene expression
vector for gene gi ∈ V , where Ei(j) denotes the relative

expression of gi in sample sj ∈ U . Assume that we have
a set T , composed of different classes for the phenotype
of interest (such as the four stages in colorectal cancer
according to Dukes classification) and the phenotype
vector C annotates each sample with one of the labels
in T , i.e., C(j) = t where t Î T .We also define the set
of all samples for a specific phenotype class t as

U (t) = {sj ∈ U : C(j) = t} .
Let G(V , ε) denote a PPI network where the product

of each gene gi Î V is represented by a node and each
edge gigj represents an interaction between the products
of gi and gj. Given a PPI network and a gene expression
dataset over multiple phenotype classes, we are inter-
ested in finding sets of genes that can together discrimi-
nate the phenotype classes with their gene expression
signatures. In order to establish the functional relevance
of these gene sets and search for these sets more effi-
ciently, we confine the search space to PPI subnetworks,
that is groups of proteins that are functionally interre-
lated through PPIs. Formally, a set S ⊆ V of proteins is

considered a subnetwork of interest if for all proteins
gi Î S , there is at least one other protein gj Î S such
that gi and gj are connected through at most ℓ hops in
the PPI network. Here, ℓ is a parameter that adjusts the
trade-off between functional relevance and computa-
tional efficiency; a larger ℓ allows searching for function-
ally less related proteins at the cost of increasing the
search space.
For a given subnetwork S ⊆ V , Chuang et al. define

the subnetwork activity of S as ES =
∑

gi∈SEi/
√|S| ,

that is the aggregate expression profile of the genes in
S [5]. Using subnetwork activity, they define an infor-
mation-theoretic measure to quantify the dysregulation
of a subnetwork. This “additive” definition of dysregula-
tion limits the framework to the identification of subnet-
works with all genes in the subnetwork dysregulated in
the same direction (i.e., all up- or down-regulated in the
phenotype of interest), and alternate approaches that
compute combinatorial expression signatures are shown
to be more powerful [9,10]. However, this additive for-
mulation serves as a useful starting point to generalize
subnetwork dysregulation to phenotypes that involve
multiple classes. For this reason, we focus on additive
subnetwork activity in this paper.
All-vs-all discriminative power of a subnetwork
It is straightforward to generalize the information-theo-
retic measure for the dysregulation of a subnetwork [5]
to multiple phenotype classes. Namely, the mutual infor-
mation between the subnetwork activity of S and the
multi-class phenotype vector, i.e., Δ all-vs-all (S) = I (ES,
C) = H(C) − H(C|ES ), provides a measure of the the
reduction in the uncertainty about C given ES. Here,

H(X) = −
∑

x∈χp(x) log(p(x)) denotes the Shannon

entropy of discrete random variable X that can take
over values from the set X . In our case, the support
set for the random variable C is T , whereas the support
set for the random variable ES is obtained by appropri-
ately quantizing the expression levels.
One-vs-all discriminative power of a subnetwork
Here, we propose an alternate measure to quantify the
power of a subnetwork in discriminating multiple phe-
notype classes from each other. This measure targets
discriminating a particular phenotype class from all
other classes. Namely, we define class-specific phenotype
vector C(t) for class t Î T as

c(t)j =
{
1
0

ifCj = t
otherwise. (1)

Then, the mutual information between subnetwork
activity and the class-specific phenotype vector C(t), i.e.,

�
(t)
one - vs - all (S) = I(ES ,C(t)) , provides a measure of the

reduction in the uncertainty about class t given ES. This
formulation offers a number of benefits as compared to

Erten et al. BMC Proceedings 2012, 6(Suppl 7):S1
http://www.biomedcentral.com/1753-6561/6/S7/S1

Page 3 of 12



the all-vs-all formulation of discriminative power: (1)
The one-vs-all formulation may lead to identification of
more interpretable markers, since, for example, it can
provide stage-specific molecular signatures for colorectal
cancer. (2) The one-vs-all formulation can extract class-
specific molecular signatures that may be missed by the
all-vs-all formulation because they do not discriminate
other classes well. (3) The phenotype random variable
takes a smaller number of values, thus offering more
statistical power for the same number of samples. The
concepts of all-vs-all and one-vs-all disciminative power
of subnetworks and the computation of mutual informa-
tion using these different formulations are illustrated in
Figure 1.

Identifying one-vs-all discriminative subnetworks
The problems of identifying subnetworks with maximum
�all - vs - all(S) or �one - vs - all(S) are intractable [5]. How-
ever, it is straightforward to generalize the greedy algo-
rithm by Chuang et al. to solve both problems efficiently
[5]. This greedy algorithm initializes a subnetwork with a
single protein. It then grows the subnetwork by adding
the protein in the neighborhood of the subnetwork (i.e.,
reachable from the subnetwork with ℓ hops) that
improves the objective function (�all - vs - all(S) or
�one - vs - all(S)) the most. The algorithm stops either
when there is no more protein in the neighborhood to
add, or the best improvement provided by a protein in
the neighborhood is below a user-defined threshold.

Figure 1 Illustration of the difference between all-vs-all and one-vs-all discriminative subnetworks. Illustration of the difference between
all-vs-all and one-vs-all discriminative subnetworks. The aggregate expression profiles of five hypothetical subnetworks are shown. Red and
green respectively represent positive and negative expression, with intensity representing magnitude. The subnetworks S1,S2,S3 and S4 are
one-vs-all discriminative, respectively indicating classes (CRC stages) A, B, C and D, since the expression profile of each subnetwork in samples
that belong to the respective class can discriminate these samples from other classes. On the other hand, S5 is an all-vs-all discriminative
subnetwork, since it discriminates all classes from each other.
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While the explained greedy algorithm is quite effective
in efficiently discovering high-scoring subnetworks, it
has several drawbacks [6]. First, this algorithm is biased
toward identifying subnetworks with very few proteins
that exhibit high dysregulation individually. This is
because the algorithm lacks global awareness, i.e., it will
stop expanding the subnetwork when the best candidate
protein to add to the subnetwork has only marginal
individual contribution, but may actually contribute a
greater deal when additonal proteins are added. Second,
this approach requires computation of mutual informa-
tion for each and every candidate protein in the neigh-
bourhood to be added to the growing subnetwork,
which may prove to be costly when the algorithm needs
to be run multiple times to assess statistical significance
of identified subnetworks. Motivated by these obser-
vations, Chowdhury et al. develop a set-cover based
algorithm, NETCOVER, which is more effective in dis-
covering proteins that complement each other in discri-
minating phenotype and control samples [6]. However,
NETCOVER is designed for binary phenotype classes
and it assumes that the samples are paired. Here, we
argue that the algorithmic insights introduced by NET-
COVER suit particularly well to the identification of
one-vs-all discriminative subnetworks. Based on this
observation, we develop COBALT, which generalizes
NETCOVER to handle unpaired samples and multiple
phenotype classes to identify one-vs-all discriminative
subnetworks.

COBALT:Cover-based algorithm for identifying one-vs-all
discriminative subnetworks
Recall that a one-vs-all discriminative subnetwork is
defined as one with differential subnetwork activity in a
specific phenotype class, as compared to all other classes.
Since subnetwork activity is defined regularly, the genes
in such a subnetwork have to be either all up-regulated
or all down-regulated in the phenotype class of interest.
Motivated by this observation, COBALT aims to identify
subnetworks such that for each sample that belongs to
the phenotype class of interest, there exists at least one
gene in the subnetwork that is up-regulated (or down-
regulated) in that sample. Such subnetworks are said to
“cover” the entire patient population that represents the
phenotype class of interest.
In order to identify the genes that are up-regulated or

down-regulated in each sample, we use the expression
of that gene in all samples as the background distribu-
tion. Subsequently, we identify samples in which the
genes’ expression deviates significantly from this back-
ground distribution. Namely, for a gene gi, consider the
distribution of the expression values Ei across all sam-
ples. We compute a quantized expression value for gi in
sample sj as follows:

Êi(j) =

⎧⎨
⎩
+1 ifEi(j) > μi + α ∗ σi
−1 ifEi(j) < μi − α ∗ σi
0 otherwise

(2)

Here, μi and si respectively represent the mean and
standard deviation of expression value of gi across all sam-

ples, i.e., μi =
∑

Sj∈UEi(j)/|U | and σi =

√∑
Sj∈U(Ei(j) − μi)

2 .

We define a as a user-defined threshold parameter for a
gene’s dysregulation in a sample to be considered signifi-
cant. We say that a gene gi positively covers a sample sj if

Êi(j) = +1 , and negatively covers sj if Êi(j) = −1 , Follow-
ing this definition, for a given gene gi and phenotype class

t Î T , we define the positive cover set P (t)
i

as the set of

all samples with phenotype t that are positively covered by

gi, i.e., P (t)
i =

{
sj ∈ U : C(j) = t and Êi(j) = +1

}
. Similarly,

the negative cover set N (t)
i

contains all samples in class t

that are negatively covered by gene gi. We illustrate these
concepts in Figure 2. It can be shown that the mutual
information of C(t) and Êi is a monotonically non-decreas-

ing function of the cardinalities of P (t)
i

and N (t)
i

[6],

i.e., one can maximize I(Êi,C
(t)) by maximizing

||P (t)
i | − |N (t)

i || .
Using the negative and positive cover sets for each

gene-class pair, COBALT identifies one-vs-all discrimi-
native subnetworks for each phenotype class by using a
greedy heuristic that is shown to be effective for the set-
cover problem [11]. Namely, for each gene gi, we first
identify the target phenotype class for that gene as the
phenotype class with largest percentage of samples posi-
tively (or negatively) covered by gi. Subsequently, we
grow a subnetwork by systematically adding a gene in
the neighborhood based on the coverage on the rest of
the uncovered samples for that class. Without loss of
generality, the algorithm identifies a minimal positive
covering subnetwork seeded at gene gi as follows:

1. Initialize subnetwork: Si ¬ {gi}
2. Define the target phenotype class t for this subnet-
work as the class that has the maximum fraction of
samples positively covered by gi: t ¬ argmaxt′ Î T{

|P (t′)
i |/|U (t′)

i |
}

3. Initialize the set of uncovered samples for class t:
M(t) ← U (t)\P (t)

i
4. Initialize the set of network neighbors:
Q ← {gj ∈ V : δ(gi, gj) ≤ �}
5. For all genes gj Î Q , compute

(P (t)
j )′ ← P (t)

j ∩ M(t)and (N (t)
j )′ ← N (t)

j ∩ M(t)
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6. Find all the genes (can be multiple) in Q with

maximum |(P (t)
j )′ | − | (N (t)

j )′| and let gk be the

gene among these genes with minimum∑
t′∈T \{t}

∣∣∣P (t)′

k

∣∣∣(i.e., gk has minimum positive back-

ground coverage).

7. Expand the subnetwork with gk: Si ¬ Si ∪ {gk}
8. Update the set of uncovered positive samples for
class t: ℳ (t) ¬ ℳ (t) \ P k

(t)

9. Update set of neighbouring genes: Q ¬ Q ∪ {gj Î
V : δ(gk, gj) ≤ ℓ} \ {gk}
10. If Q = ∅ or M(t) = ∅, return Si; otherwise, go to
step (5).

Figure 2 Illustration of the set-cover based algorithm for the identification of one-vs-all discriminative subnetworks. Here, the coverage
provided by a hypothetical three-gene subnetwork is shown. In the left panel, the distribution of the expression levels of each gene across all
samples is shown. We first compute the mean (μi) and the standard deviation (si) of this distribution for each gene gi. Subsequently, we identify
samples that are positively or negatively covered by each gene. A gene gi with expression greater than μi + a * si in a sample is said to
positively cover that sample, while a gene gi with expression less than μi - a * si in a sample is said to negatively cover that sample (we set a =
2 in our experiments). The negative and positive cover sets for each gene and the subnetwork composed of g1, g2 and g3 are shown on the
right. In this example, this subnetwork negatively covers (all samples in) Stage B.
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This algorithm is also used for identifying the minimal
negative covering subnetwork seeded at gi by simply
replacing Q with P above.

Assessing statistical significance of subnetworks
In order to asses the significance of the identified sub-
networks, we perform two distinct significance tests.
Each significance test is performed by generating an
empirical background distribution that carefully
accounts for multiple hypothesis testing. The first back-
ground distribution is obtained by randomly permuting
the class labels. The second background distribution, on
the other hand, is obtained by permuting the gene
expression profiles (the rows of the gene expression
matrix, thereby randomly reestablishing the relationship
between the expression profiles and the nodes in the
PPI network ). After generating a large number of these
randomized datasets, we use COBALT to identify class-
specific subnetworks for the randomized datasets as
well. We then use these subnetworks as the background
distribution to test the statistical significance of the dis-
criminative power of the stage-specific subnetworks
identified on the actual dataset. This approach implicitly
handles multiple hypothesis testing, since the back-
ground distribution is constructed using the most discri-
minative subnetworks that could be identified on each
randomized dataset.
Note also that the cover provided by a subnetwork for a

target phenotype class depends on the size of the sub-
network (i.e., the number of proteins in the subnetwork).
In other words, if we construct subnetworks at random,
we would expect larger subnetworks to have a higher
coverage. Furthermore, in our experiments, we also
observe that larger subnetworks tend to have higher dis-
criminative power (Δ ). Motivated by these insights, we
assess the statistical significance of a subnetwork as a
function of its size. For this purpose, we stratify the sub-
networks that compose each background distribution
according to subnetwork size and compute the p-value of
a subnetwork S by comparing Δ(S) to the discriminative
power of the background subnetworks that have similar
size to the subnetwork of interest. More precisely, the
p-value of S is defined as the fraction of subnetworks
with discriminative power greater than that of S among
all subnetworks in the background set with size equal to
that of S. A minimal covering subnetwork S discovered
by COBALT is considered to be statistically significant if
its p-value is less than the significance threshold for both
background populations.

Using identified subnetworks for classification
One application of identifying subnetworks that can dis-
criminate multiple phenotype classes is to predict the
phenotype class of a test sample using the expression

profiles of these subnetworks. This application also pro-
vides a useful means for assessing the biological rele-
vance, reproducibility, and utility of the identified
subnetworks. In order to use stage-specific subnetworks
in colorectal cancer to predict the stage of a patient,
following steps are performed:

1. We first identify both the positive and negative
covering subnetworks for each gene gi Î V .
2. In order to investigate the effect of statistical sig-
nificance on the classification utility of subnetworks,
we use two alternate strategies to extract a list of
features from the sets of covering subnetworks
found in (1):

(a) The first approach assumes that high-scoring
subnetworks are more useful for classification, as
compared to significantly discriminative subnet-
works. For each phenotype class t Î T , we sort
the subnetworks based on their all-vs-all
(�all−vs−all(S)) or one-vs-all (�all−vs−all(S)) dis-
criminative power. We then choose the top k
positive and negative covering subnetworks for
each phenotype class, giving us a total of 2*k*|T |
features to be used in classification. Here, k is a
user defined parameter to set the number of
stage-specific subnetworks that are used for each
class.
(b) The second approach assumes that assess-
ment of statistical significance will facilitate
selection of biologically more meaningful subnet-
works, also providing more power in classifica-
tion as compared to high-scoring subnetworks.
For this purpose, using the two proposed statisti-
cal significance tests discussed in the previous
section, we identify subnetworks that are signfi-
cant according to both statistical tests and use all
of these significantly discriminative subnetworks
as features for classification.
3. Once we obtain a final list of features either
using (a) or (b) at step (2), we compute the aggre-
gate expression profiles (ES ) for each of these
selected subnetworks and use these to construct
feature vectors for each sample (where each fea-
ture represents the aggreate expression of one
subnetwork).
4. Finally, we use these feature vectors to train
and test classifiers for predicting the class of the
phenotype of interest.

Results and discussion
In this section, we first give brief information about the
colorectal cancer in human (CRC) and introduce the
two stage-specific CRC datasets and the PPI network we
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use in our experiments. Subsequently, we describe in
detail the experimental framework used. After introdu-
cing the performance evaluation metrics used, we pre-
sent our experimental results comparing one-vs-all and
all-vs-all discriminative subnetworks, as well as the addi-
tive and set-cover based algorithms that are used to dis-
cover these subnetworks. Next, we analyze the effect of
the network distance parameter (ℓ) that adjusts the
search space size when growing the subnetworks.
Finally, we compare the performance of high-scoring
and statistically significant subnetworks in predicting the
stages of samples.

Human colorectal cancer
Colorectal Cancer (CRC) is one of the most common
causes of cancer related deaths in the western civiliza-
tion [12]. Diagnosis of CRC is often difficult as the
symptoms appear only at the advanced stages of the dis-
ease. Moreover, early diagnosis is very critical as the
survival rate changes dramatically with the stage of the
cancer. In fact, 5 year survival rates when diagnosis is
made at the localized stage (cancer is confined in the
primary site) and after cancer has metastasized are
around 90% and 12% respectively [13]. These observa-
tions suggest that, for effective diagnosis, prognosis and
treatment, accurate determination of disease stage is
crucial.
There are different classification systems for the pro-

gression of colorectal cancer. Dukes’ famous staging sys-
tem classifies patients based on how far the cancer is
spread [14]. TNM is another staging method providing
a more comprehensive framework including information
about the size and localization of the tumor, as well as
the involvement of lymph nodes [15]. CRC Datasets we
use in our experiments are classified by Dukes’ staging
system.

Datasets
We use two CRC microarray datasets obtained from the
Gene Expression Omnibus [16] in our experiments.
These datasets that contain labeled CRC samples with
Dukes’ 4-stage classification are the following:

• GSE14333 contains the expression profiles of
54675 genes in 290 samples.
• GSE5206 contains the expression profiles of the
same 54675 genes in 98 samples.

The distribution of the samples in each dataset with
respect to CRC stage is shown in Table 1.
The human protein-protein interaction data used in

our experiments is obtained from NCBI Entrez Gene
Database [17]. This database integrates interaction data
from several other databases available, such as HPRD,

Bi-oGrid, and BIND. We remove the nodes with no
interactions to obtain a final PPI network that contains
8959 proteins and 33,528 interactions among these
proteins.

Experimental design
COBALT is fully implemented in Matlab. We use this
implementation to perform the following classification
experiments:

• Prediction of disease stage in GSE14333. Subnet-
works discovered using GSE14333 are used to pre-
dict the stages of samples in the same dataset in a
10-fold cross validation setting. Samples in each phe-
notype class are randomly separated into ten similar-
sized groups. In each iteration, one of the groups in
each class is chosen to be the test data and the rest
of the data is used to train the classifier.
• Prediction of disease stage in GSE5206. Subnet-
works discovered using GSE14333 are used to pre-
dict the stages of samples in GSE5206. In this cross-
classification setting, the classifier is trained on
GSE14333 and tested on the other dataset, GSE5206.

For both of these settings, we use a naive Bayesian clas-
sifier provided by Matlab’s classify function. Using other
classifier options provided by Matlab’s classifier proce-
dure only marginally effects the results (data not shown).

Classification performance
In order to obtain a comprehensive picture of the perfor-
mance of different approaches, we list the precision and
recall of the classification experiments for each pheno-
type class separately. Precision refers to the percentage of
the correct predictions over all samples predicted belong-
ing to the respective CRC stage, whereas recall refers to
the percentage of the correctly predicted samples over all
samples that are clinically diagnosed to belong the
respective CRC stage. Please note that we set the network
distance parameter ℓ = 3 in all experiments unless other-
wise noted, since it provides the best performance as
shown in the next section. When quantizing the expres-
sion values of a gene over all samples using Equation 2,
we set a = 2 as the threshold parameter for the gene’s
dysregulation in a sample to be considered positively or
negatively covering.

Table 1 Number of samples labeled with each colorectal
cancer stage based on Dukes’ 4-stage classification in the
datasets used in our experiments.

stage A B C D total

GSE14333 44 94 91 61 290

GSE5206 12 32 33 21 98
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We compare COBALT with our implementation of the
two additive greedy approaches explained in detail in the
Methods section, namely additiveova and additiveava.
additiveova and additiveava refer respectively to the algo-
rithms that aim to identify one-vs-all and all-vs-all sub-
networks by greedily maximizing the discriminative
power of the subnetworks (�one−vs−all and�all - vs - all).
In the first set of experiments, we use the 10-fold cross
validation framework for prediction of disease stage of
samples in GSE14333, using the high-scoring subnet-
works extracted as features from the same dataset, i.e.,
we use the top scoring positive and negative subnetworks
for each stage in COBALT (setting k = 1), top 2 subnet-
works for each stage in additiveova and top 8 subnet-
works for additiveava as features (a total of 8 features
used in each method).
As shown in Figure 3, COBALT provides better perfor-

mance compared to both of the additive approaches in
terms of the precision in prediction for all CRC stages. It
also provides better recall values for all CRC stages
except for samples in Stage A. COBALT achieves 0.84
weighted average precision over all stages where as addi-
tiveova and additiveava respectively achieve 0.71 and 0.62
precision. Similarly, COBALT outperforms others by
achieving 0.84 weighted average recall over all stages
where as additiveova and additiveava respectively provide
0.69 and 0.60 recall.
The effect of the PPI network on classification performance
In this section, we discuss the effect of the PPI network
in the classification performance of subnetworks identi-
fied by COBALT. Since the use of the PPI network con-
fines the search space to functionally related groups of
proteins, these experiments provide insights into whether
these functional constraints also improve the biological

reproducibility and the utility of identified stage-specific
subnetworks. For this purpose, we systematically evaluate
the classification performance of the subnetworks for
varying network distance parameter (ℓ) that adjusts the
search space size when growing the subnetworks using
COBALT. We also compare the subnetworks identified
by the network-guided algorithm with groups of genes
that are identified by using the same algorithm in a net-
work-free fashion. The set-cover based algorithm imple-
mented by COBALT is quite efficient, therefore a
network-free search for stage-specific groups of proteins
is feasible.
In the PPI network free approach, the next protein to

be added to the subnetwork does not need to be in a cer-
tain proximity (i.e., ℓ is effectively set to ∞) to the pro-
teins already in the subnetwork. This increases the search
space for the algorithm, thus making it infeasible for
most of the state-of-the-art algorithms to perform some
complex analyses such as statistical significance compu-
tations. The effect of the parameter ℓ on the classification
performance for each CRC stage is shown in terms of
precision and recall in Figures 4 (a) and 4(b) respectively.
As seen in the figures, the classification performance
(hence the reproducibility) of identified subnetworks
improves as PPI network neighborhood is defined more
flexibly. This is expected, since the PPI network is incom-
plete, thus consideration of indirect interactions accounts
for missing interactions to a certain extent. However, as
the search diameter reaches 3, the classification perfor-
mance saturates and adding more flexibility to the search
does not improve performance any more. This observa-
tion suggests that incorporation of PPI networks is useful
for increased efficiency of the search, as well as identifica-
tion of more reproducible subnetworks. Thus we set

Figure 3 Precision and recall values for each stage in prediction of stages of samples in GSE14333. Precision and recall values for each
stage in prediction of stages of samples in GSE14333 in a 10-fold cross validation framework are shown in (a) and (b) respectively. COBALT
outperforms the additive approaches in terms of precision for all CRC stages. It also provides better recall values for all CRC stages except for
Stage A.
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ℓ = 3 as it is the most reasonable choice in terms of both
the classification performance and the computational
efficiency of the algorithms.
The effect of using statistically significant subnetworks on
classification performance
In this section, we compare the classification perfor-
mance of high-scoring subnetworks to that of statisti-
cally significant subnetworks. On the GSE14333 dataset,
COBALT identifies 9 statistically significant subnetworks
with 139 unique genes (please see Additional File 1 for
the list of genes and the covered stage of colorectal can-
cer for these 9 subnetworks). Using these subnetworks
as features, we predict the stage of the samples in
GSE14333 in a 10-fold cross validation framework as
previously explained. We choose the same number of
features with top (�one - vs - all(S) . score and compare
the classification performance of both approaches.
Stage-specific precision and recall values for both
approaches are shown in Table 2. As seen in the table,
utilizing statistical significance computations when
choosing features improve performance for predicting
the stages of patients in GSE14333, with less number of
unique genes used.
In the cross-classification framework, we use the statisti-
cally significant features identified in GSE14333 to pre-
dict the classes of samples in the GSE5206 dataset, i.e.,
the classifier is trained using GSE14333 and tested on
GSE5206. The stage-specific precision and recall values
are shown in Table 3. The weighted average precision
and recall values are 0.57 and 0.56 respectively.

Conclusions
In this article, we have proposed two alternate formula-
tions of the discriminative power of subnetworks when

working on multi-class phenotypes, namely, one-vs-all
and all-vs-all. We then introduced our cover-based algo-
rithm for network-guided disease marker discovery, for
identifying subnetworks with one-vs-all discriminative
power. Moreover, we have introduced a framework for
assessing the statistical significance of the identified sub-
networks. Systematic experiments on real multi-staged
CRC datasets show that the proposed algorithm outper-
forms the additive algorithms in terms of providing
higher precision and recall in prediction of sample

Figure 4 Precision and recall plots of each stage with respect to different values of the network distance parameter ℓ. Precision and
recall plots of each stage, in prediction of CRC stages of samples in GSE14333 in a 10-fold cross validation framework are shown in (a) and (b)
respectively, with respect to different values of the network distance parameter ℓ, as well as the PPI-free approach. Setting ℓ = 3 provides the
best performance for most of the cancer stages in terms of both precision and recall, also providing a smaller search space compared to ℓ = 4
and the PPI-free approach.

Table 2 Contingency tables for prediction of CRC stages
of samples in GSE14333.

Predicted Classes

stage A B C D recall

Actual Classes A 37 3 0 4 0.84

B 3 74 11 6 0.78

C 5 5 77 4 0.84

D 4 7 3 47 0.82

precision 0.75 0.83 0.84 0.77

Predicted Classes

stage A B C D recall

A 38 1 2 3 0.86

Actual Classes B 4 75 8 7 0.79

C 3 2 83 3 0.91

D 2 3 4 52 0.85

precision 0.80 0.92 0.85 0.80

Contingency tables for prediction of CRC stages of samples in GSE14333 with
COBALT using (a) 9 statistically significant features composed of 139 unique
genes, (b) 9 features with top mutual information scores composed of 144
unique genes. The weighted average precision scores are 0.86 and 0.81 for
(a) and (b) respectively. Similarly, weighted average recall values are 0.85 and
0.81 respectively for (a) and (b).
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stages. The efficient implementation of the cover-based
algorithm enabled us to show that using statistically sig-
nificant subnetworks as features improves classification
performance compared to using same number of high-
scoring subnetworks (in terms of mutual information
with respect to the phenotype vector). We have also
shown that guiding the subnetwork discovery search
with the PPI network identifies subnetworks that are
more informative (in terms of classification power) than
the net-works identified without the PPI network. We
have also investigated the impact of different values of
the network distance parameter, ℓ, and concluded that
using ℓ = 3 is the most reasonable choice in terms of
both classification performance and computational
efficiency.

Additional material

Additional file 1: List of 9 statistically significant subnetworks
identified for GSE14333 dataset. All the gene products in the 9
statistically significant subnetworks identified for GSE14333 dataset are
listed, as well as the covered colorectal cancer stage and cover direction
of the corresponding subnetworks. Please note that these gene products
might not be direct neighbours in the PPI network, as we set the
network distance parameter ℓ = 3 in the experiments.
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