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Abstract

1,000 offspring without phenotypes was 0.91.

Background: Recent developments in genetic technology and methodology enable accurate detection of QTL
and estimation of breeding values, even in individuals without phenotypes. The QTL-MAS workshop offers the
opportunity to test different methods to perform a genome-wide association study on simulated data with a QTL
structure that is unknown beforehand. The simulated data contained 3,220 individuals: 20 sires and 200 dams with
3,000 offspring. All individuals were genotyped, though only 2,000 offspring were phenotyped for a quantitative
trait. QTL affecting the simulated quantitative trait were identified and breeding values of individuals without
phenotypes were estimated using Bayesian Variable Selection, a multi-locus SNP model in association studies.

Results: Estimated heritability of the simulated quantitative trait was 0.30 (SD = 0.02). Mean posterior probability of
SNP modelled having a large effect (p;) was 0.0066 (95%HPDR: 0.0014-0.0132). Mean posterior probability of
variance of second distribution was 0.409 (95%HPDR: 0.286-0.589). The genome-wide association analysis resulted
in 14 significant and 43 putative SNP, comprising 7 significant QTL on chromosome 1, 2 and 3 and putative QTL
on all chromosomes. Assigning single or multiple QTL to significant SNP was not obvious, especially for SNP in the
same region that were more or less in LD. Correlation between the simulated and estimated breeding values of

Conclusions: Bayesian Variable Selection using thousands of SNP was successfully applied to genome-wide
association analysis of a simulated dataset with unknown QTL structure. Simulated QTL with Mendelian inheritance
were accurately identified, while imprinted and epistatic QTL were only putatively detected. The correlation
between simulated and estimated breeding values of offspring without phenotypes was high.

Background

Recent developments in genetic technology enable geno-
typing of many individuals for thousands of markers,
thereby increasing the possibility to unravel the genetic
background of various economically important complex
traits and disorders using genome-wide association stu-
dies. Different methods are available to perform a gen-
ome-wide association study. Bayesian Variable Selection
is a powerful method in association studies [1,2], because
it simultaneously estimates all SNP (Single Nucleotide
Polymorphisms) effects and possible polygenic effects.

* Correspondence: Anouk3.Schurink@wur.nl

'Animal Breeding and Genomics Centre, Wageningen University, PO Box
338, 6700 AH Wageningen, The Netherlands

Full list of author information is available at the end of the article

( BioMVed Central

Multi-locus SNP models like Bayesian Variable Selection
model should therefore improve our ability to find and
localize the true association between genotype and
phenotype [3].

The aim of our research was to accurately identify QTL
(Quantitative Trait Locus) affecting the quantitative trait
and to predict breeding values of offspring without phe-
notypes in the simulated data of the 15™ QTL-MAS
workshop using Bayesian Variable Selection implemented
in the Bayz software [4].

Methods

Data

An outbred population was simulated with 1,000 gen-
erations of 1,000 individuals, which was followed by
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30 generations of 150 individuals. The data used in
the analysis corresponded to the last generations of the
pedigree and contained 20 sire families. Each sire was
mated with 10 dams and number of offspring per dam
was 15 resulting in 3,000 offspring in total. Both pedi-
gree and phenotypes of sires and dams were not
provided. Genomic kinship between sires and dams
indicated that sires and dams most likely descended
from one population (data not shown). Only 10 out of
15 offspring per full-sib family were phenotyped for a
quantitative trait that was normally distributed. All indi-
viduals were genotyped for 9,990 SNP, which were
equally distributed on 5 chromosomes (size: 1 Morgan
each). Monomorphic SNP (n = 2,869) and SNP with
MAF (Minor Allele Frequency) <0.01 (n = 383) were
excluded from the analysis. A complete description of
the simulated data can be found on the website of the
15" QTL-MAS workshop [5].

QTL analysis and breeding value estimation

The model used for QTL detection and breeding value
estimation simultaneously fitted polygenic and SNP
effects:

y =+ Za + S Xgox + €,

where y is the quantitative trait and g is the mean; Z is
the incidence matrix indicating for each observation the
(polygenic) genetic effects by which it is influenced; a is

the (polygenic) genetic effects with a~ N (0, Aoaz),
where A is the numerator relationship matrix between
the individuals based on pedigree and o/ is the (poly-

genic) genetic variance; ¥, X0 fitted additive SNP asso-
ciation effects, where oy is a vector with allele

substitution effects with ~ N(O, Iagzk ), where I is an iden-

tity matrix of appropriate dimensions and Gazk is the addi-

tive genetic variance of SNP and Xy is an incidence
matrix relating allele substitution effects to observed SNP

genotypes; and e are residuals with e ~ N (0, Ioez) oazk,

where I is an identity matrix of appropriate dimensions
and o} is the residual variance. SNP were also modelled

to have a dominance effect on the simulated quantitative
trait as well. However, no significant dominance effect
was found (data not shown).

Bayesian Variable Selection implemented in the Bayz
software [4] was used to detect QTL and predict breed-
ing values of individuals without phenotype. The applied
Bayesian Variable Selection was similar to the well-
known BayesC 7 method [6], except prior of 7 had a
uniform(0,1) distribution [6] while we used a slightly
informative prior distribution ~ Beta(100,1). In Bayz [4],
shrinkage of allele effects was done by applying a
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mixture distribution. Many SNP effects were shrunk to
nearly zero to obtain high sparsity in SNP effects and
only a small part of the SNP effects were less severely
shrunken, thereby identifying SNP with important asso-
ciations. The prior mixture distribution was:

N(0, o)) with probability 7o
e N(o, ogzl) with probability 7 = (1 — 7o) ’

where the ‘null’” distribution modelled the majority of
SNP with (virtually) no effect using prior settings m =

0.98 and (ngo = 0.001. The second distribution modelled
SNP with large effects where prior settings were m; =
0.02 and agzl = 0.1. Variances of the mixture distribution

and other model effects were estimated using a uniform
prior. A Bernoulli distribution specified probabilities for
a SNP belonging to the ‘null’ or second distribution and
proportions for the mixture were set to have a slightly
informative prior distribution ~ Beta(100,1).

Applied MCMC techniques

The model estimated a ‘mixture indicator’ that indicated
per MCMC (Markov ChainMonte Carlo) cycle for each
SNP whether it was estimated to belong to the ‘null’ (=
0) or second distribution (= 1). After averaging in the
MCMC, a value ranging from 0 to 1 indicated the pos-
terior probability of each SNP to have a large effect (p;).

Most samplers were single site Gibbs samplers. An
alternative Metropolis Hastings sampler was used to
speed up mixing of estimated SNP variance compo-
nents. Joint updates for 2 SNP effects and 2 ‘mixture
indicators’ were made. The Metropolis Hastings sampler
updated the variance of the ‘null’ and second distribu-
tion thereby keeping a constant ratio (1:100) to allow
for fast mixing by jointly shrinking or expanding var-
iances together with all SNP effects. Tuning of step size
from the Metropolis Hastings sampler was needed to
reach an acceptance rate around 0.5.

One MCMC chain of 52,000 cycles with a burn-in
period of 2,000 cycles was run, which was found suffi-
cient to obtain accurate estimates (effective number of
samples was 39.6 for polygenic genetic variance and
>180 for all other model effects).

Identification of associated SNP

Bayes Factor (BF) was used to identify associated SNP as
the odds ratio between the estimated posterior and prior
probabilities for a SNP:

f)i/(l _ 131)

BF = /
ﬂl/(l —7'[1)
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where p; = ‘mixture indicator’ of a SNP and 7, = prior
1/101 related to the Beta distribution. Using guidelines
from Kass and Raftery [7] to judge BF, a value above 10
was considered as ‘strong’ evidence. SNP with BF between
3.2 and 10 were considered to be ‘putative’.

In case more SNP within a region showed significant
association, the size of the region and LD (Linkage Dise-
quilibrium) (r?) among the SNP were used to call a single
or multiple underlying QTL. When identified SNP showed
clear LD blocks (r* of most SNP >0.7), SNP were consid-
ered to be associated with the same QTL.

Results and discussion

Estimated posterior mean heritability of the simulated
quantitative trait was 0.30 (SD = 0.02). The genome-wide
association analysis resulted in 14 significant SNP and 43
putative SNP (Additional file 1). Taking into account the
distance between SNP and their LD, we identified 7 sig-
nificant QTL on chromosome 1, 2 and 3 and several
putative QTL on all chromosomes. Figure 1 shows the
Manbhattan plot of SNP for the simulated quantitative
trait. Comparison with simulated QTL presented during
the QTL-MAS workshop showed that one QTL was pre-
sent on chromosome 1 and two QTL on chromosome 2
and 3. Our analysis identified one of the two linked QTL
in repulsion on chromosome 3, the simulated imprinted
QTL on chromosome 4 and the epistatic QTL on chro-
mosome 5 as putative. However, some putative SNP were
false positive (Additional file 1). We identified QTL
based on distance between SNP and their LD. However,
assigning SNP as QTL based on LD patterns (SNP with
low LD were considered to be separate QTL) resulted in
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Figure 2 Posterior probability density plot of proportion of

SNP with large effect (771).

false positive QTL. Assigning single or multiple QTL to
significant SNP was not obvious, especially for SNP in
the same region that were more or less in LD.

Mean posterior probability of SNP modelled having a
large effect (77;) was 0.0066 (95%HPD (Highest Prob-
ability Density) region: 0.0014-0.0132). Posterior density
plot of 7; is given in Figure 2.

Correlation between the simulated and estimated
breeding values of 1,000 offspring without phenotypes
was 0.91. Comparison of all applied methods by all
researchers showed that the correlation between the
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Figure 1 Manhattan plot of SNP for the simulated quantitative trait. SNP above the line are considered to be significant; SNP above the
dashed line are considered to be putative.
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simulated and estimated breeding values were highest
(0.85-0.94) when the data were analysed using Bayesian
Variable Selection methods.

Conclusions

Bayesian Variable Selection model showed to be a suc-
cessful method for genome-wide association using dense
marker maps as it identified the simulated QTL with
Mendelian inheritance. Imprinted and epistatic QTL
were only putatively detected. The correlation between
simulated and estimated breeding values of offspring
without phenotypes was high.

Additional material

[ Additional file 1: Overview of associated SNP. ]
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