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Abstract

Background: The QTLMAS XVth dataset consisted of the pedigrees, marker genotypes and quantitative trait
performances of 2,000 phenotyped animals with a half-sib family structure. The trait was regulated by 8 QTL which
display additive, imprinting or epistatic effects. This paper aims at comparing the QTL mapping results obtained by
six participants of the workshop.

Methods: Different regression, GBLUP, LASSO and Bayesian methods were applied for QTL detection. The results of
these methods are compared based on the number of correctly mapped QTL, the number of false positives, the
accuracy of the QTL location and the estimation of the QTL effect.

Results: All the simulated QTL, except the interacting QTL on Chr5, were identified by the participants. Depending
on the method, 3 to 7 out of the 8 QTL were identified. The distance to the real location and the accuracy of the
QTL effect varied to a large extent depending on the methods and complexity of the simulated QTL.

Conclusions: While all methods were fairly efficient in detecting QTL with additive effects, it was clear that for
non-additive situations, such as parent-of-origin effects or interactions, the BayesC method gave the best results by
detecting 7 out of the 8 simulated QTL, with only two false positives and a good precision (less than 1 cM away
on average). Indeed, if LASSO could detect QTL even in complex situations, it was associated with too many false
positive results to allow for efficient GWAS. GENMIX, a method based on the phylogenies of local haplotypes, also
appeared as a promising approach, which however showed a few more false positives when compared with the
BayesC method.

Background
In the past years, the availability of large sets of genetic
markers has allowed the implementation of genome-wide
association studies (GWAS) in livestock. Many methods
have been developed for GWAS, most of them hypothe-
sizing an additive QTL effects. However, more complex
situations exist, with dominance, interactions between
genes (epistasis) or parent-of-origin effects (imprinting)
[1,2]. The XVth QTLMAS dataset was simulated for a
single quantitative trait controlled by 8 QTL with addi-
tive, epistatic or imprinting effects. Comparing the results
obtained by the different groups should provide insight
into determining which method is best fitted for each

complex case. In addition, until now, most of the GWAS
studies have been performed in ruminant species (large
number of progeny per sire, only one or two per dam). In
order to establish whether this kind of approach is also
adapted to pig and chicken designs, this dataset was
designed for medium-sized full sib families.

Methods
Simulated data
The simulated data set was described by Elsen et al. [3].
Briefly, the population comprised 3,000 individuals born
from 20 sires and 200 dams. Within each family, 10 pro-
genies were assigned phenotypes and marker genotypes.
A total of 10,000 SNPs carried by 5 chromosomes of 1
Morgan each were simulated. Eight QTL were simulated:
one quadri-allelic additive QTL with a large effect on

* Correspondence: olivier.demeure@rennes.inra.fr
1INRA, UMR1348 PEGASE, Domaine de la Prise, 35590 Saint-Gilles, France
Full list of author information is available at the end of the article

Demeure et al. BMC Proceedings 2012, 6(Suppl 2):S2
http://www.biomedcentral.com/1753-6561/6/S2/S2

© 2012 Demeure et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:olivier.demeure@rennes.inra.fr
http://creativecommons.org/licenses/by/2.0


Chr1, two linked QTL in phase on Chr2, two linked QTL
in repulsion on Chr3, one imprinted QTL on Chr4 and
two interacting QTL on Chr5. Random noise was added,
giving an heritability coefficient of 0.30. The marker den-
sity, linkage disequilibrium (LD) and minor allele fre-
quency (MAF) were similar to real life parameters.

Methods used by the participants
The methods used were either genomic, considering all
SNPs in a single analysis, or local, testing SNPs one by
one (Table 1).
In the genomic group, the GBLUP method [4,5]

assumed that all SNPs may contribute to trait variability,
while all other methods considered the SNP population
as a mixture of a small number of SNPs involved in this
variability and a large number of neutral SNPs. This mix-
ture situation was solved by different LASSO approaches
(the classical LASSO used by Nadaf et al. [4] was com-
pared to two new strategies used by Usai et al. [6]) and
by MCMC Bayes techniques: Bayes A [4], Bayes B [4,5],
Bayes C [7] and Bayes Cπ [5,8].
Various methods scanning successive candidate gene

locations were proposed. Nadaf et al. [4] made use of the
half sib regression technique described by Knott et al. [9],
while all other methods were based on a mixed model in
which a random polygenic effect was added to the fixed
QTL effect. Dashab et al. [7] compared different ways of
processing this marker information: single marker analysis,
phasing of genotypes and haplotype analysis, and cluster-
ing of haplotypes based on local genealogies using the
GENMIX model of Sahana et al. [10]. Two approxima-
tions of the full mixed model were tested by Nadaf et al.
(the GRAMMAR method described by Aulchenko et al.
[11] and an EMMAX-type approach described by Zhang
et al. [12]), in which the polygenic variance was estimated
before scanning for QTL.

Comparison of the results
Results from the five groups were compared based on
four criteria: i) the number of true QTL detected (i.e. a
QTL mapped at less than 5 cM from a simulated QTL);
ii) the number of false positive QTL (i.e. the distance to

the closest true QTL exceeded 5 cM); iii) the accuracy of
the QTL location (i.e.the distance between the estimated
QTL location and the true location); iv) the accuracy of
the QTL effect estimation.
Since the results of Nadaf et al. [4] were only pre-

sented in a graphical way, no numerical indication will
be provided for their methods.

Results
A global view of the performances of the different meth-
ods is given in Table 2. The estimated positions of the
true QTL on each chromosome, when detected, are
assembled in Table 3, and the estimation of the QTL effect
is presented in Table 4. On the whole, BayesC, LASSO
and GENMIX showed the highest power (and 7 out of the
8 QTL), with a rather high number of false positives for
GENMIX and a huge number of false positions with the
LASSO.

Large effect additive QTL (Chr1)
All groups and methods found this additive QTL with a
large effect of 1.28 phenotypic standard deviations
(Figure 1A). With the exception of the BayesCπ method
used by Shurink et al. [8], the genomic methods gave an
estimated location which was very close to the exact one
(less than 0.1 cM away) (Table 3). Single SNP analyses
were less consistent: the single SNP mixed model used by
Dashab et al. [7] positioned the QTL at 0.7 cM from the
true QTL, while the same model, approximated with an
EMMAX type approach by Fu et al. [13] gave a very pre-
cise position (0.1 cM). Adding marker information to the
analysis increased location accuracy (haplotype and phy-
logenybased approaches of Dashab et al. [7]), with a very
satisfying performance of the GENMIX method. Surpris-
ingly, two other regions were also often identified at
12.5cM (BayesB and BayesCπ[5], LASSO [6] and the
EMMAX-type mixed model [13]) and 40 cM (LASSO [6]
and haplotype regression [7]). Local linkage disequili-
brium between SNPs around these positions and the
QTL may contribute to the occurrence of these false dis-
coveries (Figure 2). However, it is interesting to mention
that no false positives occurred with the GBLUP

Table 1 Methods and models used by the participants at the XVth QTLMAS

Authors Genomic approaches Single QTL scan

GBLUP LASSO Bayes Regression Mixed model

A B C Cπ Full approximated

Dashab et al. x 3 versions

Fu et al. EMMAX type

Nadaf et al. x x x x GRAMMAR

Schurink et al. x

Usai et al. x

Zeng et al. x x x

Demeure et al. BMC Proceedings 2012, 6(Suppl 2):S2
http://www.biomedcentral.com/1753-6561/6/S2/S2

Page 2 of 7



methods. All methods underestimated the variance
explained by the QTL, the closest method being the
BayesCπ used by Zeng et al. (Table 4).

Linked QTL in phase (Chr2)
The two QTL located at 81.9 and 93.8 cM were identi-
fied both by the single SNP mixed model based on phy-
logenies [7] and by all mixture models solved by LASSO
or Bayesian strategies. None of these approaches pre-
vailed: the Bayesian methods were very precise for the
second QTL, but the other techniques worked fine for
the first one (Figure 1B). This first QTL was not identi-
fied by the Dashab et al. haplotype regression strategy
[7] while the GBLUP [5] and the single marker mixed
models, full [7] or approached [13], were unable to
detect the second QTL. For these QTL, the single SNP
regression methods [7,13] provided a correct estimation
of the QTL effects while most of the other methods
underestimated them (Table 4). Only LASSO and the
haplotype-based regression methods showed significant

false positives, even if two suggestive false QTL were
detected with the GBLUP. The significant false QTL
were located in the 71.4-76.1 cM interval, which pre-
sents a slight LD with the two true QTL (Figure 3).

Linked QTL in repulsion (Chr3)
Again, almost all methods identified the two QTL
located at 5 and 15 cM (Figure 1C). More precisely,
whereas the first QTL was correctly identified by all
methods, the GBLUP [5] and single SNP approximated
mixed model [13] missed the second QTL. The second
QTL was also globally less precisely mapped than the
first one (average distances: 1.19 cM versus 0.38 cM
away from the real location). Interestingly, most of the
methods correctly estimated the first QTL effect but lar-
gely underestimated the second effect. False positives
were found with most of the methods (excluding
BayesCπ and the two single SNP mixed models), with
two major locations in the 26.7-28.9 cM and the 84.1-
87.3 cM regions.

Table 2 Comparison of QTL mapping results

Method Authors QTL detected False positives Missing QTL (a) Mean distance to the QTL (cM)

GBLUP Zeng 5 0 3,5,8 1.32

BayesB Zeng 6 3 7,8 1.21

BayesC Dashab 7 2 8 0.96

BayesCπ Schurink 5 0 5,6,8 0.83

Zeng 5 1 6,7,8 0.45

LASSO1 Usai 7 Numerous 6 0.83

LASSO2 Usai 7 Numerous 6 0.74

LASSO3 Usai 7 Numerous 6 0.29

MM single SNP Dashab 5 3 3,6,8 0.73

MM Haplotype Dashab 5 6 2,6,8 0.61

MM Phylogeny Dashab 7 5 8 1.07

EMMAX Fu 3 1 3,5,6,7,8 0.43

(a) 2: Chr2, 81,9cM; 3: Chr2, 93,75cM; 5: Chr3, 15cM; 6: Chr4, 32,2cM; 7: Chr5, 36,3cM; 8:Chr5, 99,2cM.

Table 3 Localization of the simulated QTL depending on the method/model used

Chromosome Chr1 Chr2 Chr2 Chr3 Chr3 Chr4 Chr5 Chr5

True position 2.85 81.9 93.75 5 15 32.2 36.6 99.2

GBLUP Zeng 2.95 83.0 4.75 28.2 no no

BayesB Zeng 2.85 83.0 93.7 4.75 15.8 27.9 no no

BayesC Dashab 2.75 83.1 93.4 4.8 14.8 28.3 35.1 no

BayesCπ Schurink 1.6 83.1 93.4 2.9 (14.8) (28.3) 35.1 no

BayesCπ Zeng 2.75 83.0 93.6 4.6 16.6 no no no

LASSO1 Usai 2.90 81.9 95.8 4.8 16.1 28.0 35.1 no

LASSO2 Usai 2.90 81.8 94.0 4.8 16.7 34.9 36.8 no

LASSO3 Usai 2.90 81.8 95.8 4.8 15.8 28 36.8 no

MM single SNP Dashab 3.55 82.0 no 4.8 16.5 no 36.2 no

MM Haplotype Dashab 2.5 no 96.0 4.8 14.9 no 35.9 no

MM Phylogeny Dashab 2.7 82.3 95.8 4.8 11.1 31.7 36 no

EMMAX Fu 2.9 83.1 no 4.8 no no no no
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Table 4 Comparison of QTL effect estimations

Chromosome Chr1 Chr2 Chr2 Chr3 Chr3 Chr4 Chr5 Chr5

True effect1 12. 2. 2. 2. 2. 4. 1.272 1.273

GBLUP Zeng 4.39 1.92 2.31 1.18 1.34

BayesB Zeng 2.17 0.68 0.62 0.2 0.15 0.13

BayesC Dashab

BayesCπ Schurink 1.92 1.28 0.84 1.24 0.97

Zeng 7.01 0.69 0.66 1.18 0.24

LASSO1 Usai 2.22 0.71 0.48 1.43 0.15 0.2 0.12

LASSO2 Usai 2.09 1.39 2.18 1.67 0.38 0.23 1.42

LASSO3 Usai 2.22 1.01 0.56 1.58 0.29 0.01 0.67

MM single SNP Dashab 4.19 2.1 2.71 0.65 1.31

MM Haplotype Dashab

MM Phylogeny Dashab

EMMAX Fu 4.39 2.08 2.46
1 Apparent difference between homozygous in trait units
2 Only 63.6% of the homozygous individuals, which were also homozygous for the second interacting QTL, expressed the 2 trait unit effect of this 1st QTL
3Only 63.6% of the homozygous individuals, which were also homozygous for the first interacting QTL, expressed the 2 trait unit effect of this 2nd QTL

Figure 1 QTL mapping results for the 12 tested methods. 1- Zeng et al. GBLUP; 2 - Zeng et al. Bayes B; 3 - Dashab et al. Bayes C; 4 -
Schurink et al. BayesCπ; 5 - Zeng et al. Bayes Cπ; 6 - Usai et al. LASSO classic; 7 - Usai et al. LASSO method1; 8 - Usai et al. LASSO method2; 9 -
Dashab et al. MM Single SNP; 10 - Dashab et al. MM Haplotype; 11 - Dashab et al. MM Phylogeny; 12 - Fu et al. EMMAX. Dotted lines: simulated
QTL locations.
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Imprinted QTL (Chr4)
All genomic approaches except BayesCπ were able to
detect the QTL (a suggestive signal was observed by
Schurink et al. [8]) (Figure 1D). The local mixed model
techniques did not detect this QTL, with the notable
exception of GENMIX which in fact gave the most pre-
cise location of the QTL (only 0.5 cM away). It must be
emphasized that none of the models underlying the
methods assumed to possibility of such an imprinting
effect. In addition, the accuracy of the QTL location was
low, with an average distance to the true location of 3.4
cM. Only the GENMIX [7] method found the QTL at
less than 0.5 cM from its real location. For this chromo-
some, many false positives were detected in two regions
(55-62 cM and 90-98 cM), by methods that either did
or did not map the imprinted QTL. While the power
and accuracy differ between the methods for this
imprinted QTL, none of the latter could correctly esti-
mate its effect. All methods gave a very low effect for
this quite large QTL.

Interacting QTL (Chr5)
Finally, on chromosome 5, the first QTL was generally
detected, with the exception of the GBLUP, BayesB, and
BayesCπ in Zeng et al. [5] and of the approximated
mixed model. Inversely, none of the methods was able to
detect the second interacting QTL (Figure 1E). It must
however be noted that a positive signal was obtained in
the 91-92 cM interval by all of the mixed model
approaches performed by Dashab et al. [7] and by the
classical LASSO in Usai et al. [6] (this last result is less
convincing as this method gave a very large number of
false positives). This is surprising considering that a

similar set of interacting QTL was simulated in the XIVth

QTLMAS dataset and was correctly mapped by all
groups [14]. In addition, while one of the GBLUP tested
by Zeng et al. [5] took epistasis into consideration, it did
not map the second QTL. These results could be
explained by the dominance hypothesis considered in the
simulations, i.e. there is an effect at the first QTL only if
there is the “1 1” genotype at the second QTL (Table 1 in
[3]). Another group of false positives was also identified
around 8.9 cM by the Bayes, LASSO and GENMIX meth-
ods. Again, none of the methods was able to estimate the
QTL effect correctly.

Conclusions
Considering all the results together, it is clear that the
methods differ both in power and accuracy. The main
cleavage is observed between additive and non-additive
QTL detection. If most methods were able to detect the
additive QTL located on chromosomes 1, 2 and 3, none
of the methods mapped both interacting QTL on Chr5
and only 8 identified the imprinted QTL on Chr4. For
this specific QTL, none of the regression-based methods
(except the GENMIX approach) gave any results. If we
overlook the LASSO method, which mapped very large
regions with numerous false positives, the best results
were obtained by Dashab et al. [7] with their BayesC and
GENMIX methods (which identified 7 out of the 8 QTL).
The BayesC method was particularly interesting as it
showed only 2 false positives on all five chromosomes
and it provided a good mapping precision, except for the
imprinted QTL. If we consider the accuracy of the esti-
mation of QTL effects, the two most efficient methods
were GBLUP [5] and single SNP regression [7,13].

Figure 2 Linkage Disequilibrium between the simulated QTL (position 2.85 cM) and the chromosome 1 SNPs.
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All Bayesian- and LASSO-based methods tended to
underestimate the QTL effects. One interesting point to
consider in the future would be to adapt the methods to
more complex genetic situations since they represent a
substantial part of the heritability of complex traits and
they are not correctly allowed for in present methods,
even those supposed to consider epistasis [5].
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