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Abstract

Next-generation sequencing technologies enable us to explore rare functional variants. However, most current
statistical techniques are too underpowered to capture signals of rare variants in genome-wide association studies.
We propose a supervised coalescing of single-nucleotide polymorphisms to obtain gene-based markers that can
stably reveal possible genetic effects related to rare alleles. We use a newly developed empirical Bayes variable
selection algorithm to identify associations between studied traits and genetic markers. Using our novel method,
we analyzed the three continuous phenotypes in the GAW17 data set across 200 replicates, with intriguing results.

Background
With the advent of next-generation sequencing, rare
variants such as single-nucleotide polymorphisms
(SNPs) with a minor allele frequency (MAF) less than
5% are getting more attention in genome-wide associa-
tion studies (GWAS). Because of the small variance at a
locus with a single rare allele, it is difficult to detect the
allele’s association with the phenotype of interest. One
approach to tackling this problem is to collapse multiple
rare SNPs within a defined region and treat them as a
single predictor in the model. Known genetic regions
are used in the collapsing process to get gene-based
markers. Penalized orthogonal-components regression
(POCRE) [1] is used to perform this task.
Genome-wide association studies are challenged by

the “curse of dimensionality”; that is, a large number of
SNPs are genotyped (large p) from a small number of
biological samples (small n). As a result, an increasing
effort has been devoted to selecting variables in high-
dimensional data. One strategy for dealing with variable
selection is through the thresholding concept. Empirical
Bayes thresholding [2,3] was proposed to estimate sparse
sequences observed in Gaussian white noise. Here,
we use the empirical Bayes thresholding method to
select variables in linear regressions with efficient

implementation. Final models are obtained by entering
gene-based markers and environmental factors possibly
associated with the phenotype of interest. All analyses
are based on three continuous phenotypes in the
GAW17 data set across 200 replicates.

Methods
Data set
The genome-wide association of the three continuous
phenotypes (Q1, Q2, and Q4) in the GAW17 data set
[4] was investigated. All analyses presented here are
based on the genotype of 697 unrelated individuals. The
genotype data were recoded into counts of minor alleles
using PLINK [5]. The other three traits (Age, Sex, and
Smoke) were used in the model to consider the environ-
mental effects. The analyses were performed for all 200
replicates.

Supervised coalescing of SNPs in a genetic region
The GAW17 data consist of 3,205 autosomal genes with
24,487 SNPs, where only 3,132 SNPs (12.79%) have
MAF ≥ 0.05. A large proportion of these rare variants
present challenges for statistical analyses to detect their
associations to a phenotype of interest when these rare
variants are considered individually. Thus we use a
gene-based coalescing method to collapse SNPs that
reside within the same gene. Considering a causal gene,
it is natural to assume that not all SNPs in the genetic* Correspondence: minzhang@purdue.edu
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region are necessary to be causal. Hence we used
POCRE in the coalescing process. Because POCRE can
achieve both variable selection and dimension reduction
simultaneously, it has advantages in grouping highly
correlated predictors and in giving adaptive sparse linear
combinations of the original predictors. For the kth
genetic region, consider a regression model:
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is a design matrix consisting of SNPs residing in the kth
gene. Assume that both Y and Xk are centralized (τk = 0 in

Eq. (1)). Starting with X X1 = k , POCRE sequentially con-

structs components Xm mw such that Xm is orthogonal
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where gl(g) is a penalty function with a tuning para-
meter l. Zhang and colleagues [1] used the empirical
Bayes thresholding method proposed by Johnstone and
Silverman [2,3] to introduce a proper penalty function,
which provides adaptive sparse loadings of orthogonal
components.
POCRE is a supervised learning method that needs the

information of both genotype and phenotype to build a
model. In the GAW17 data set, the genotype is held
fixed but the phenotype varies across 200 replicates. To
overcome potential overfitting in the model-building
process, we selected one replicate as a training set to
obtain the sparse coefficients of SNPs in each genetic
region, and we then applied the results from POCRE to
data in another replicate. In practice, when only one
data set is available, cross-validation can be performed
to select a tuning parameter to alleviate overfitting.

Empirical Bayes variable selection
In the variable selection process, 3,205 gene-level mar-
kers acquired from the coalescing process and the other
three traits (Age, Sex, and Smoke) were put into the
model. The reason for putting Age, Sex, and Smoke in
the model is the lack of knowledge about whether these
three traits are associated with the studied trait. If some
variables are known to be associated with the studied
trait, then a regression model can be fitted with these
known factors, with the residuals taken as new
responses in the variable selection process. Empirical

Bayes variable selection (EBVS) was proposed to obtain
a final model. The EBVS algorithm works well in fitting
a large-p, small-n regression model:
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where p is the number of predictors, Y is an n-vector

of phenotype, and X X X= ( , ..., )1
T

p
T is a design matrix.

By further assuming that Y is centralized and X is stan-
dardized (μ = 0 in Eq. (3)), the EBVS puts the following
mixture prior distribution to model the sparsity of bj:
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where d b0 1( ) j = if b j = 0 and d b0 0( ) j = other-

wise; and g b ba j ja a( ) exp( | |) = −1
2 , following Johnston

and Silverman [2,3]. Data-driven optimal values for ω
and a were obtained to achieve adaptivity to sparseness
and shape of prior distribution of bj, respectively. With
current values of b and s, the optimal values for ω and
a are obtained as the values that maximize their full
conditional distribution functions, P(ω|b,s) and P(a|b,
s), respectively. b as the posterior median is then
updated. The iterative procedure for updating b and
hyperparameters is carried out until convergence. With
this mixture prior distribution, EBVS gives a sparse
solution for b.

Results
The results of analyzing Q1 are shown in Table 1, which
lists both genetic and environmental components identi-
fied to have nonzero effects in at least 5 out of 200
replicates. Among 200 replicates, four genes were identi-
fied as having nonzero effects: FLT1 in 200 replicates,
KDR in 53 replicates, ARNT in 12 replicates, and RIPK3
in 6 replicates. The first three genes are true causal

Table 1 Identified genes and covariates in at least 5 out
of 200 replicates for Q1

Gene/covariate Average of b̂ a SDa Frequency

Age 0.01667 0.00154 200

Smokeb 0.49877 0.06437 200

FLT1 0.78316 0.10969 200

KDR 0.65308 0.16401 53

ARNT 0.79018 0.30581 12

RIPK3 0.87993 0.28302 6
a The average of b̂ and its standard deviation are calculated on the basis of
replicates whose component has a nonzero coefficient.
b Smoke is coded as 1 for smokers and 0 for nonsmokers.
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genes, but RIPK3 is not. Another two environmental
factors, Age and Smoke, are included in the final model
across all 200 replicates. Because all the phenotypes in
the GAW17 data set are simulated to be influenced by
SNP-based markers, the gene-based results are trans-
formed into SNP-based results, and we find that 23 out
of 39 causal SNPs detected have nonzero effects. Eleven
of these SNPs affiliate with FLT1. Ten of them are
within the KDR region, and two of them are in the
ARNT region.
In addition, another 98 noncausal genes were identi-

fied. All of these genes were identified in only one or
two out of 200 replicates, which might be due to noise.
Another causal gene, VEGFC, was also found and
included in the final model in two replicates. However,
after transforming gene-based results into SNP-based
results, none of the true causal SNPs affiliating to
VEGFC were identified.

For the SNPs identified in at least 5 out of 200 repli-
cates, we plotted the frequencies of identified SNPs
across 200 replicates against chromosomal position
(Figure 1). In Figure 1, many of the identified SNPs are
false positives, even though they affiliate to the causal
genes. Figure 2 provides the plots of frequencies within
three causal genetic regions: FLT1, KDR, and ARNT.
Considering only genetic components, false-positive and
false-negative rates were calculated for both gene-based
and SNP-based results. Using the gene-based results
obtained from EBVS, we calculated the average false-
positive and false-negative rates across 200 replicates as
0.3067 (± 0.2634) and 0.0024 (± 0.0002), respectively.
For the SNP-based results across 200 replicates, the
average false-positive rate was 0.5819 (± 0.1708) and the
average false-negative rate was 0.0012 (± 0.0002). The
number of false-positive selections is not negligible and
it is higher in SNP-based results. This is because

Figure 1 Identified SNPs in at least 5 out of 200 replicates for Q1. The x-axis indicates the chromosomal position of each SNP. The y-axis
represents the frequency at which SNPs were identified as having nonzero effects across 200 replicates. Red dots represent true positives, and
blue dots represent false positives.

Figure 2 Identified SNPs for Q1 within ARNT, KDR, and FLT1 genetic regions. The frequencies of identified SNPs within three genetic
regions, ARNT, KDR, and FLT1, are shown. The x-axes indicate the chromosomal position of each SNP. The y-axes represent the frequency at
which SNPs were identified as having nonzero effects across 200 replicates. Red dots represent true positives, and blue dots represent false
positives.

Pungpapong et al. BMC Proceedings 2011, 5(Suppl 9):S5
http://www.biomedcentral.com/1753-6561/5/S9/S5

Page 3 of 5



identified gene-based markers include noncausal SNPs
during the coalescing process to obtain gene-level
markers.
Table 2 lists genes associated with Q2 that were found

to have nonzero effect in at least 5 of the 200 replicates.
Note that there are only two genes in this list and that
their corresponding frequencies are low among the 200
replicates: VNN1 (12 replicates) and VNN3 (7 repli-
cates). The low frequencies result from the low residual
heritability of Q2 (0.29), which makes it difficult to
detect any genetic signal. Moreover, Q2 was found to
not be influenced by any environmental factors.
For the true discoveries of SNP-level markers, 32 out

of 72 true causal SNPs have been detected to have non-
zero effects. However, the frequency of many true causal
SNPs is 1. Only five of identified SNPs have frequencies
greater than 5 (Figure 3): four of them affiliate to VNN3
and one affiliates to VNN1. Both VNN1 and VNN3 are
within the 6q23.2 region displayed in Figure 3. The

average false-positive and false-negative rates for gene-
based results across 200 replicates are 0.0625 (± 0.2238)
and 0.004 (± 0.0001), respectively. For SNP-based
results, the average false-positive rate is 0.0727 (±
0.2309) and the false-negative rate is 0.0029 (± 0.0001).
The difficulty of detecting effects in a trait with a low
residual heritability results in a low false-positive rate,
and many false negatives were found here.
For Q4, all environmental factors, Age, Sex, and

Smoke, have influences on this trait. Among 200 repli-
cates, Age and Smoke were included in the final model
in all 200 replicates, whereas Sex was included in the
final model in 199 replicates (Table 3). Our results
show that Q4 decreases with age, is higher in males,
and is lower in smokers. In the GAW17 simulation,
there is no genetic component influencing Q4. How-
ever, the analyses found 15 genes identified to have a
nonzero effect, but all of them were detected in only
one among 200 replicates. The average false-positive
rates among 200 replicates are 0.0350 (± 0.1842) and
0.0300 (± 0.1710) based on gene-based and SNP-based
results, respectively.

Discussion
With the next-generation sequencing technology, many
rare variants or low-frequency SNPs can be detected.
The customary criteria for MAF in data preprocessing

Table 2 Identified genes and covariates in at least 5 out
of 200 replicates for Q2

Gene/covariate Average of b̂ a SDa Frequency

VNN1 1.35707 0.31121 12

VNN3 0.99105 0.17755 7
a The average of b̂ and its standard deviation are calculated on the basis of
replicates whose component has a nonzero coefficient.

Figure 3 Identified SNPs in at least 5 out of 200 replicates for Q2. The x-axis indicates the chromosomal position of each SNP. The y-axis
represents the frequency at which SNPs were identified as having nonzero effects across 200 replicates. Red dots represent true positives, and
blue dots represent false positives.
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(i.e., MAF ≥ 0.05) in GWAS is not appropriate in this
situation. One possible solution is to reduce the cutoff
point of MAF. Although this approach can be done
easily, it is difficult to determine the optimal cutoff
point. With too big a cutoff point, the majority of rare
variants are discarded in analyses and little is gained
from the next-generation sequencing data. With too
small a cutoff point, most SNPs are included in a
model, presenting challenges in statistical analyses for
detecting signals of rare variants.
We grouped both common and rare variants in the

same genetic region into a gene-based marker using
POCRE. POCRE has a variable selection property that
assumes that not all SNPs in a genetic region contribute
to a gene-based marker. Although this assumption is
realistic, the variable selection property of POCRE might
rule out true causal SNPs in the coalescing process. On
the other hand, the coalescing process might include
noncausal SNPs, resulting in a false positive when the
gene is identified to have nonzero effect by EBVS. Better
techniques to combine SNPs into gene-based markers
need to be further studied to overcome the challenges
in the next-generation sequencing.
Another challenge in analyzing the GAW17 data is

signal detection for a trait with low heritability. It is well
known that it is difficult to identify nonzero effects in
GWAS for a trait with low heritability. However, true
causal rare variants worsen the situation and make the
variants more difficult to detect. Better strategies need
to be further explored in GWAS to tackle the problem
of a low heritability trait with rare variants.

Conclusions
In this study, we proposed using POCRE to coalesce
common and rare variants in the same gene into a
gene-level marker and applied the newly developed
empirical Bayes variable selection to detect the associa-
tion between markers and three continuous phenotypes
in the GAW17 data set: Q1, Q2, and Q4. With a large
number of predictors, the newly developed empirical
Bayes approach not only selects important variables into
the model but also estimates the effect sizes of nonzero
predictors simultaneously.

Our results show that combining both common and
rare variants into gene-level markers can increase the
power to detect their signals. In fact, many identified
true causal SNPs have MAF = 0.000717 or have variants
that are found in only one individual. Nevertheless,
there are still a number of false negatives. Based on
GAW17 data, we notice that false negatives occur when
only a few causal SNPs are present in the genetic region.
When the size of causal SNPs in the gene region is
moderate, it is still challenging to detect true signals
when most of the causal SNPs are rare variants. As
shown in our analysis, causal SNPs with higher MAFs
can be identified more frequently than causal SNPs with
lower MAFs.
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Table 3 Identified genes and covariates in at least 5 out
of 200 replicates for Q4

Gene/covariate Average of b̂ a SDa Frequency

Age –0.04591 0.00064 200

Smokeb –0.36779 0.04127 200

Sexc 0.22870 0.03260 199
aThe average of b̂ and its standard deviation are calculated on the basis of
replicates whose component has a nonzero coefficient.
bSmoke is coded as 1 for smokers and 0 for nonsmokers.
cSex is coded as 1 for males and 0 for females.
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