POSTER PRESENTATION

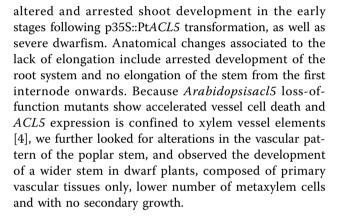
Open Access

In search for the role of thermospermine synthase gene in poplar vascular development

Ana Milhinhos^{1*}, Andreia Matos¹, Francisco Vera-Sirera², Miguel Blazquez², Célia Miguel¹

From IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery Arraial d Ajuda, Bahia, Brazil. 26 June - 2 July 2011

Background


Plant polyamines are preferentially detected in actively growing tissues and have been implicated in growth and developmental processes such as embryogenesis, floral developmental, fruit ripening, senescence and stress responses [1]. Recently it has been established a link between polyamines and vascular development as it was found that, in *Arabidopsis*, the loss-of-function mutants of *ACAULIS5* (*ACL5*) gene, encoding thermospermine synthase, exhibit a severe dwarf phenotype, suggesting that thermospermine acts as a regulator of stem elongation [2,3]. However, in trees, no studies have yet been reported. Due to the relevance of vascular development in wood formation we are investigating the role of thermospermine in vascular tissues of poplar.

Materials and methods

A search for *ACL5*-like sequences in *Populus trichocarpa* genome allowed us to identify three putative *ACL5* orthologous genes. Based on the degree of sequence similarity, we have selected one of them, *PtACL5*, to generate transgenic plants bearing the constructs for overexpression and silencing of this gene in poplar.

Results

High expression levels of *PtACL5* in overexpression transgenic lines have been found to be correlated to higher thermospermine content in leaves and young stems, but not to a higher level of other polyamines, suggesting that *PtACL5* encodes a thermospermine synthase in poplar, and it is most probably an ortholog of *ACL5* in poplar. Interestingly, these plants display

Conclusions

Overall, our results suggest that thermospermine has a regulatory role in xylem differentiation/maturation in poplar. Although a feedback control of thermospermine synthesis seems to be present in *Arabidopsis*, in our transgenic poplar the high levels resulting from overexpression of thermospermine synthase gene seem to overcome any turn-over that might be occurring of the excess thermospermine being produced. Currently we are pursuing the spatial localization of the *ACL5* transcript in poplar plants through *in situ* hybridization, and by taking advantage of the generated transgenic lines we hope to understand the role of thermospermine in the vascular tissues formation in this woody species.

Acknowledgements

This work is supported by the FCT project PTDC/AGR-GPL/098369/2008 and FCT PhD grant SFRH/BD/30074/2006 (A.M.). Dr. Max Cheng for providing *P. trichocarpa* Nisqually-1 clone and Dr. Brian Jones for T89 hybrid clone.

Author details

© 2011 Milhinhos et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: milhinho@itqb.unl.pt

¹Instituto de Tecnologia Química e Biológica-Univ. Nova de Lisboa; Instituto de Biologia Experimental e Tecnológica (ITQB-UNL;IBET) Av. República, EAN, 2780-157 Oeiras, Portugal

Full list of author information is available at the end of the article

¹Instituto de Tecnologia Química e Biológica-Univ. Nova de Lisboa; Instituto de Biologia Experimental e Tecnológica (ITQB-UNL;IBET) Av. República, EAN, 2780-157 Oeiras, Portugal. ²Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) 46022 Valencia, Spain.

Published: 13 September 2011

References

- Kumar A, Taylor M, Altabella T, Tiburcio AF: Recent advances in polyamine research. Trends Plant Sci 1997, 2:124-130.
- Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y: ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO J 2000, 19:4248-4256.
- Knott JM, Römer P, Sumper M: Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 2007, 581(16):3081-3086.
- Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blázquez MA, Tuominen H: ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573-2582.

doi:10.1186/1753-6561-5-S7-P72

Cite this article as: Milhinhos *et al.*: **In search for the role of thermospermine synthase gene in poplar vascular development**. *BMC Proceedings* 2011 **5**(Suppl 7):P72.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit