
PROCEEDINGS Open Access

Haplotype inference in general pedigrees with
two sites
Duong D Doan, Patricia A Evans*

From 6th International Symposium on Bioinformatics Research and Applications (ISBRA’10)
Storrs, CT, USA. 23-26 May 2010

Abstract

Background: Genetic disease studies investigate relationships between changes in chromosomes and genetic
diseases. Single haplotypes provide useful information for these studies but extracting single haplotypes directly by
biochemical methods is expensive. A computational method to infer haplotypes from genotype data is therefore
important. We investigate the problem of computing the minimum number of recombination events for general
pedigrees with two sites for all members.

Results: We show that this NP-hard problem can be parametrically reduced to the Bipartization by Edge Removal
problem and therefore can be solved by an O(2k · n2) exact algorithm, where n is the number of members and k is
the number of recombination events.

Conclusions: Our work can therefore be useful for genetic disease studies to track down how changes in
haplotypes such as recombinations relate to genetic disease.

Background
Human genomes contain two copies of each chromo-
some. Research shows that single chromosomes, called
haplotypes, are useful to study complex genetic diseases
[1]. While genomic data, called genotypes, are abundant
and easy to collect, haplotypes are rare and much more
difficult to obtain by a biochemical method. Therefore, a
computational method to infer haplotypes from geno-
type data, called haplotyping, is necessary. Genotypes
can be obtained from a population group where rela-
tionships between members are unknown or from a
multigenerational family pedigree with known relation-
ships between members. We only consider pedigree
data in this paper.
In the absence of recombination events, haplotypes of

members in a pedigree follow the Mendelian law of
inheritance, where the two haplotypes of a child are
transferred from its parents, one haplotype from its
father and the other from its mother. Various

haplotyping algorithms exist for non-recombinant pedi-
gree data [2-5], especially a linear time algorithm for
non-recombinant tree pedigrees [2] and a near-linear
time algorithm for non-recombinant general pedigrees
[3]. Haplotype inference is complicated by recombina-
tion events and the complex structures of the data
themselves. Recombination happens when complemen-
tary parts of both of a parent’s haplotypes can be inher-
ited as a single combined haplotype of a child (Figure
1). Structures of the pedigree data can be complex with
loops, where there are multiple inheritance paths
between some family members.
The haplotyping problem has been studied extensively

in the last few years, both for pedigree and population
data. If recombinations are allowed, the problem of
inferring haplotypes for pedigrees with the minimum
number of recombinations is NP-hard [6]. In fact, infer-
ring haplotypes for pedigrees with minimum number of
recombinations is NP-hard even for general pedigrees
with only two sites or tree pedigrees with multiple sites
[7]. For reconstructing haplotype configurations for ped-
igree data, Qian and Beckmann [8] proposed a rule-
based algorithm with a time complexity O(2dn2m3),

* Correspondence: pevans@unb.ca
Faculty of Computer Science University of New Brunswick, Fredericton, New
Brunswick, Canada
Full list of author information is available at the end of the article

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

© 2011 Doan and Evans; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:pevans@unb.ca
http://creativecommons.org/licenses/by/2.0

where d is the largest number of children in a family, n
is the number of members and m is the number of
sites. The main principle of their algorithm is that the
best haplotype configuration for pedigree data is the one
that minimizes the number of recombination events (the
Minimum-Recombinant Haplotype Configuration
(MRHC) problem). In [9][6] Li and Jiang proposed an O
(dmn) block-extension algorithm for the MRHC pro-
blem using a greedy heuristic to resolve adjacent sites.
However, as discussed in [10], this algorithm did not
always find the haplotypes that minimized the number
of recombinations, and worked under some restrictions.
In order to improve the performance and handle miss-
ing data, an integer linear programming (ILP) formula-
tion [10] was proposed, in which a branch-and-bound
algorithm was used to narrow the search space. When
the number of recombination events is strictly smaller
than a positive number k, an O(mn · logk+1n) time prob-
abilistic algorithm is given on tree pedigrees [11].
We study the minimum haplotype configuration for

general pedigrees, where each member in a pedigree has
only two sites; even this restricted problem is NP-hard
[6]. We assume that there are no data missing and no
data errors from the input genomic data. We prove that
our problem can be reduced to the problem of finding
the line index of a signed graph[12]. We further show
that finding the line index of a signed graph can also be
reduced to the Bipartization by Edge Removal problem.
Our problem can therefore be solved by a fixed-para-
meter algorithm with a running time of O(2k · n2),
where n is the number of members and k is the number
of recombination events.

Concepts
A member is an individual. A set of members is called a
family if it includes only two parents and their children;
it is a parent-offspring trio (hereafter a trio) if only two
parents and one child are considered. A set of families
connected through known family relationships is a

pedigree. A parent is an internal parent if it is a child of
another family; it is an external parent otherwise.
In diploid organisms, a cell contains two copies of

each chromosome. The description data of the two
copies are called a genotype while those of a single copy
are called a haplotype. A specific location in a chromo-
some is called a site and its state is called an allele.
There are two main types of sites, microsatellites and
single nucleotide polymorphisms. A microsatellite site
has several different states while a single nucleotide
polymorphism (SNP) site has exactly two possible states,
denoted by 0 and 1. Only SNPs with two possible states
are considered in this paper, as in other works on haplo-
type inference. If the states at a specific site in two hap-
lotypes are the same, then this site is a homozygous site
(0-0 or 1-1); if they differ, it is heterozygous (0-1 or 1-0).
Two haplotypes combine together to form one geno-
type. Each member u has two haplotypes, denoted by
h1u and h2u, which are vectors of 0 and 1’s of length m,
where m is the number of sites. The genotype of u, gu,
is a vector of 0’s, 1’s and 2’s of length m, where gu[i] =
0 means h1u[i] = 0 = h2u[i], gu[i] = 1 means h1u[i] = 1
= h2u[i], and where gu[i] = 2 means {h1u[i], h2u[i]} =
{0,1}. We say h1u and h2u are consistent with gu. The
complement haplotype of a haplotype h at a heterozy-
gous site is denoted by h , where h h= −1 so, 0 1=
and 1 0= .
The problem in this paper is to find the haplotypes

h1u and h2u for all members u that minimize the num-
ber of recombination events, given their genotypes gu. A
set of haplotypes found for all members is called a hap-
lotype configuration. When gu[i] = 0 or 1, then h1u[i]
and h2u[i] are known, but if gu[i] = 2, we may not yet
know the value of h1u[i] and h2u[i], in which case we
give them the value “?”, and say that the site is unre-
solved. Our problem is defined as follows.
2-site-MRHCopt:Given the genotypes of a general pedi-

gree P containing n members, where each member has
only two sites, find a haplotype configuration that mini-
mizes the number of recombination events.
This optimization problem, called 2-site-MRHCopt,

was proven NP-hard [7]. We investigate the correspond-
ing decision version of 2-site-MRHCopt.
2-site-MRHCk: Given a positive integer k and the gen-

otypes of a general pedigree P containing n members,
where each member has only two sites, is there a haplo-
type configuration with at most k recombination events
explaining P?
There is a correspondence between an optimization

version and a decision version of the MRHC problem.
We can get a result for the optimization version of the
problem by trying parameter k with 0 and increasing its
value step by step to solve the decision version until the
problem answer is Yes. On the other hand, we can

Figure 1 Non-recombination vs. recombination. Recombination
happens between sites 1 and 2 of parent u and the child c receives
a combined haplotype from parent u. Here haplotypes of members
are displayed in columns.

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 2 of 10

immediately get a result for the decision version of the
problem from a result of the optimization version.

Methods
We construct a pedigree graph to represent the 2-site-
MRHCk problem.

Label members
Given a member u and its two sites i and j, if sites i and
j are both heterozygous or both homozygous, the mem-
ber is labeled. If only one site is homozygous and the
other site is heterozygous, the member is unlabeled.
If i and j are both homozygous with the same value

(gu[i] = gu[j] = 0 or gu[i] = gu[j] = 1), u is labeled
green. If i and j are both homozygous with different
values (gu[i] = 0 and gu[j] = 1, or gu[i] = 1 and gu[j] =
0), u is labeled red. If i and j are both heterozygous,
gu[i] = gu[j] = 2, u is labeled grey . A member is
resolved if it is labeled red or green. A member is
unresolved if it is labeled grey. A grey member u will
later be resolved green if h1u[i] = h1u[j] = 0 or h1u[i]
= h1u[j] = 1. It is resolved red otherwise. The resolu-
tion of a grey member depends on its adjacent
members.

Insert positive edges
If u is a parent of v and both u and v are labeled, we
insert a positive edge, epos(u, v), between u and v. A posi-
tive edge epos(u, v) means the label of u and the label of
v should be the same once resolved, unless a recombina-
tion occurs in u. The reason for this is that if there is no
recombination in u, then v receives one full haplotype
from u and another full haplotype from another parent
based on the Mendelian law of inheritance. Therefore,
the label of u and the label of v should be the same if
there is no recombination; otherwise, there is a recombi-
nation event in u. If u is a resolved vertex and there is a
positive edge between u and a grey vertex v, we color v
the same as the color of u, since a recombination event
at u is not detectable and does not affect the color of v.

For example, member c in Figure 2.a would be colored
red because its parental member u is red, and u and c
are linked by a positive edge.

Insert negative edges
We also consider a trio with two parents, u and v, and a
child c. If both parents are labeled but the child is not
labeled, we insert a negative edge, eneg(u, v), between u
and v. A negative edge eneg(u, v) means u and v should
be resolved with different labels, unless there is a
recombination event in one parent of c.
This phenomenon can be explained as follows. If there

is no recombination and u and v have the same resolved
label, i.e., both red or both green, then sites i and j of c
must be both homozygous or both heterozygous based
on the Mendelian law of inheritance. Because only one
site of c is homozygous and the other site is heterozy-
gous, one recombination occurs if u and v have the
same label when resolved, but no recombination occurs
if they are resolved differently.
Figure 2 shows positive and negative edges inserted

between members in the pedigree.

Process unlabeled members
So far, we have processed labeled members. Now we
process an unlabeled member u that has one homozy-
gous site and one heterozygous site.
If u is a child in its previous generation, a negative

edge is inserted between two parents of u as discussed
in Subsection . If u is a parent of a child c, there is no
way to detect whether there is a recombination event
in u caused by haplotype shuffling or not. This fact
can be explained as follows. Without loss of generality,
suppose gu[i] = 0 and gu[j] = 2, the haplotype pair of u
inferred would be h1u = 01 and h2u = 00. The possible
mixed haplotypes transferred to c from u are still
either {01} or {00}. In both cases, we can explain u as
a member with no recombination event by pointing
the haplotype of c that is received from u to the
appropriate haplotype of u.

Figure 2 Inserting positive and negative edges. Here genotypes of members are displayed.

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 3 of 10

Because we use unlabeled child members to insert
negative edges only and there is no way detect haplotype
shuffling in unlabeled parental members, we only con-
sider members that are labeled from now on. Once
labeled members are resolved, we can resolve unlabeled
members accordingly.

Pedigree graph
Pedigree P can be considered to be an undirected graph
G = (V, E). Each vertex v Î V is a member with three
possible labels, red, green, and grey. Each edge e(u, v) Î
E is either a positive edge, e Î Epos, or a negative edge; e
Î Eneg, (E = Epos ∪ Eneg). Graph G, set up this way, is a
signed graph [12]. Let N(u) be the set of adjacent ver-
tices of u. Let w(e) be the weight of edge e. If e is a posi-
tive edge, w(e) = +1 . If e is a negative edge, w(e) = –1.
Observation 1.There are at most n vertices and O(n)

edges in the pedigree graph.
There are n members in the pedigree. A vertex is cre-

ated for each member, except for unlabeled members
with one site homozygous and one site heterozygous.
Thus there are at most n vertices in the pedigree graph.
Except for external parents, a member has two positive

edges linking it to two parents. Therefore, the number of
edges in the graph is linear in the number of child mem-
bers. If a member is an unlabeled member, the two posi-
tive edges linking two parents and the child are replaced
by a negative edge between the two parents. Thus the
number of edges in the pedigree graph is O(n).
The 2-site-MRHCk problem can now be solved by

determining if we can label every grey vertex in G either
red or green such that if we partition the set of vertices
V into (Vred, Vgreen) and let E* be the set of edges
between Vred and Vgreen then

w e w e k
e E E e E Epos neg

() ()
\∈ ∗∩ ∈ ∗

∑ ∑+ ≤ (1)

Given a pedigree graph, any two adjacent members
linked by a positive edge should be in the same parti-
tion, and any two adjacent members linked by a nega-
tive edge should be in different partitions. Any edge
whose constraint is not satisfied represents a recombina-
tion event between the two adjacent members, or, in the
case of a negative edge having endpoints in the same
partition, between one parent and the child. Equation 1
thus counts the number of recombination events in the
whole pedigree and ensures that it is at most k. This
problem can be reduced to the problem of finding the
line index of a signed graph [12].

Signed graph
A graph G = (V, E) is a signed graph if it has both posi-
tive and negative edges (E = Epos ∪ Eneg) [12], where w

(epos) = 1 and w(eneg) = –1. Let (V1, V2) be a partition of
V, and E* be the set of edges between V1 and V2. The
line index of the cut (V1, V2) is defined as:

l V V w e w e
e E E e E Epos neg

(,) () ()
\

1 2 = +
∈ ∗∩ ∈ ∗
∑ ∑ (2)

The line index of graph G is defined as:

l G l V V
V V

() min (,)=
⊆1

1 2 (3)

The corresponding decision version of finding the line
index of graph G is defined as follows.
LineIndexk: Given a signed graph G and a positive

integer k, is there a line index of G at most k?
Clearly, the 2-site-MRHCk problem can be reduced to

the LineIndexk problem. We will show that the LineIn-
dexk problem can be reduced to the Bipartization by
Edge Removal problem, a classic NP-complete problem
that is fixed-parameter tractable.

Data deduction rules
Given the signed graph G constructed as above and a para-
meter k (k ≥ 0), we apply some data deduction rules to trans-
form (G, k) to (G′, k′), where G′ is smaller than G and k′ ≤ k.
Let G \ u be the graph obtained from G by deleting

the vertex u and all edges incident on u. Let G \ e(u, v)
be the graph obtained from G by deleting edge e(u, v).
Let N(u) be the set of all adjacent vertices of u. Let

N upos
red() and N uneg

red() be the sets of all red vertices

adjacent to u by positive edges and negative edges,

respectively. Let N upos
green() and N uneg

green() be the sets of

all green vertices adjacent to u by positive edges and
negative edges, respectively.
Observation 1If ∑ w(epos(red, green)) + ∑ |w(eneg(green,

green)) + w(eneg(red, red)) |>k, then G is a No-instance
for 2-site-MRHCk.
This observation is true based on Equation 1.
Observation 2If x is a grey vertex

andN x N x kpos
green

neg
red() ()+ > then x is labeled green. If x

is a grey vertex and N x N x kpos
red

neg
green() ()+ > then x is

labeled red.
If we label x oppositely (from red to green and vice

versa), there are more than k recombination events in G.
Observation 3If x is a grey vertex

and N x N x N xpos
green

neg
red() () ()+ > ⎡⎢ ⎤⎥2 then x is labeled

green. If x is a grey vertex

and N x N x N xpos
red

neg
green() () ()+ > ⎡⎢ ⎤⎥2 then x is labeled

red.

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 4 of 10

If N x N x N xpos
green

neg
red() () ()+ > ⎡⎢ ⎤⎥2 and x is labeled

red then more than half of its incident edges cause
recombination events. Thus x is labeled green. Similarly

for the case N x N x N xpos
red

neg
green() () ()+ > ⎡⎢ ⎤⎥2 .

Reduction rule 1 If a vertex u has degree 0, then (G,
k) is a Yes-instance of 2-site-MRHCk if and only if (G \
u, k) is a Yes-instance.
Proof 1 This is true based on Equation 1. If u is a grey

vertex, we arbitrarily relabel u to either red or green and
put u in the corresponding partition. In both cases, k
remains the same.
Reduction rule 2 If a grey vertex u has degree 1, then

(G, k) is a Yes-instance of 2-site-MRHCk if and only if
(G \ u, k) is a Yes-instance.
Proof 2 Let v be the vertex incident to u. If e(u, v) is a

positive edge, u is labeled the same as the label of v and
is put in the same partition as v. If e(u, v) is a negative
edge, u is labeled oppositely from the label of v and is
put in the different partition from the partition of v. In
the both cases k remains the same.
Reduction rule 3 If two vertices u and v are resolved

with the same label (both red or both green) and there is
an edge eneg(u, v), then (G, k) is a Yes-instance of 2-site-
MRHCk if and only if (G \ eneg(u, v),k – 1) is a Yes-
instance.
Proof 3 This is true based on Equation 1.
Reduction rule 4 If two vertices u and v are resolved

with the same label and there is an edge epos(u, v), then
(G, k) is a Yes-instance of 2-site-MRHCk if and only if
(G \ epos(u, v), k) is a Yes-instance.
Proof 4 This is true based on Equation 1.
Reduction rule 5 If two vertices u and v are resolved

with opposite labels and there is an edge epos(u, v), then
(G, k) is a Yes-instance of 2-site-MRHCk if and only if
(G \ epos(u, v), k – 1) is a Yes-instance.
Proof 5 This is true based on Equation 1.
Reduction rule 6 If two vertices u and v are resolved

with opposite labels and there is an edge eneg(u, v), then
(G, k) is a Yes-instance of 2-site-MRHCk if and only if
(G \ eneg(u, v),k) is a Yes-instance.
Proof 6 This is true based on Equation 1.
Reduction rule 7 If a grey vertex x has degree 2 with

adjacent vertices u and v, three cases arise:
1. e(u, x) and e(x, v) are both positive edges
(a) If u and v are both resolved with the same label

(both red or both green), then (G, k) is a Yes-instance of
2-site-MRHCk if and only if (G \ x, k) is a Yes-instance.
Proof 7 We label x with the same label as the label of

u and v and put x in the same partition as u and v.
(b) If u and v are both resolved with opposite labels

(one red and one green), then (G, k) is a Yes-instance of
2-site-MRHCk if and only if (G \ x, k – 1) is a Yes-
instance.

Proof 8 We label x with the same label as the label of
either u or v. In both cases there is a recombination
event in x or either u or v. Without loss of generality, if
we label x with the same label as the label of u and put
x in the same partition as u, then x and v are labeled
oppositely. The positive edge between x and v cause a
recombination event. By deleting x, the parameter k is
reduced by 1.
(c) If only u is resolved and v is not resolved, let G′ be

the graph obtained from G by merging u and x, then
(G, k) is a Yes-instance of 2-site-MRHCk if and only if
(G′, k) is a Yes-instance.
Proof 9 We label x with the same label as the label of

u and put x in the same partition as u. By merging u
and x, edge epos(x, v) becomes epos(u, v). Thus parameter
k remains the same.
(d) If neither u nor v resolved, let G′ be the graph

obtained from G by merging u and x, then (G, k) is a
Yes-instance of 2-site-MRHCk if and only if (G′, k) is a
Yes-instance.
Proof 10 Even though neither u nor v is resolved, we

can assume that x will be labeled the same as the future
label of either u or v, say u. Be merging u and x, edge
epos(x, v) becomes epos(u, v). Thus parameter k remains
the same.
2. e(u, x) and e(x, v) are both negative edges
(a) If u and v are both resolved with the same label,

then (G, k) is a Yes-instance of 2-site-MRHCk if and
only if (G \ x, k) is a Yes-instance.
Proof 11 We label x with the opposite label from the

label of u and v and put x in the different partition from
u and v. Thus parameter k remains the same.
(b) If u and v are both resolved with opposite labels,

then (G, k) is a Yes-instance of 2-site-MRHCk if and
only if ((G \ x), k – 1) is a Yes-instance.
Proof 12 We label x with a opposite label from the

label of u. Therefore x and v have the same label and
eneg(x, v) causes a recombination event. Once deleting x,
edge eneg(x, v) is also removed and thus the parameter k
is reduced by 1.
(c) If only u or v resolved, say u, we transform G to G′

by labeling x with the opposite label of the label of u
and deleting eneg(u, x). (G, k) is a Yes-instance of 2-site-
MRHCk if and only if (G′, k) is a Yes-instance.
Proof 13 We put x in a different partition from the

partition of u. Since edge eneg(u, x) does not cause a
recombination event, parameter k remains the same.
(d) If neither u nor v resolved, then (G, k) is a Yes-

instance of 2-site-MRHCk if and only if ((G \ x) ∪ epos(u,
v), k) is a Yes-instance.
Proof 14 We label x with the opposite label from the

label of u and v. If u and v are labeled the same in G′
then epos(u, v) does not cause a recombination event and
parameter k remains the same for graph G′. In this case

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 5 of 10

x is labeled with opposite color from the color of u and v
in G. If u and v are labeled oppositely in G′ then epos(u,
v) causes a recombination event. This corresponds to one
recombination event in x or either u or v because what-
ever the color of x is (red or green), eneg(u, x) and eneg(x,
v) cause a recombination event in G. Graph G′ will have
the same parameter k.
3. Either e(u, x) or e(x, v) is a positive edge. Without

loss of generality, assume e(u, x) is a positive edge and e
(x, v) is a negative edge.
(a) If u and v are both resolved with the same label,

then (G, k) is a Yes-instance of 2-site-MRHCk if and
only if (G \ x, k – 1) is a Yes-instance.
Proof 15 If we label x either red or green then either

epos(u, x) or eneg(x, v) causes a recombination event.
Transforming graph G by deleting x, we obtain graph G′
with k′ = k – 1.
(b) If u and v are both resolved with opposite labels,

then (G, k) is a Yes-instance of 2-site-MRHCk if and
only if ((G \ x), k) is a Yes-instance.
Proof 16 We label x with the same label as the label

of u and put x in the same partition as u; eneg(x, v) does
not cause a recombination event. Transforming graph G
by deleting x, we obtain graph G′ with k′ = k.
(c) If only u or v resolved
i. If u is resolved, we transform G to G′ by labeling x

with the same label as the label of u and merging u and
x, (G, k) is a Yes-instance of 2-site-MRHCk if and only if
(G′, k) is a Yes-instance.
Proof 17 If we label x the same as the label of u, epos

(u, x) does not cause a recombination event. Once mer-
ging u and x, edge eneg(x, v) becomes eneg(u, v) and para-
meter k remains the same.
ii. If v is resolved, we transform G to G′ by labeling x

oppositely from the label of v and deleting e(x, v), (G, k)
is a Yes-instance of 2-site-MRHCk if and only if (G′, k)
is a Yes-instance.
Proof 18 Similar to the previous proof.
(d) If neither u nor v resolved, we transform G to G′

by merging x with u. (G, k) is a Yes-instance of 2-site-
MRHCk if and only if (G′, k) is a Yes-instance.
Proof 19 Even though neither u nor v resolved, we can

assume that we will label x with the same label as the
future resolved label of u. Thus epos(u, x) does not cause
a recombination event. Transforming graph G by mer-
ging x and u, edge eneg(x, v) becomes eneg(u, v) and we
obtain graph G′ with k′ = k.
There is no grey vertex with degree less than three in

the graph once these data reduction rules are applied.
Vertices with high degrees will likely be eliminated.
Therefore, our data reduction rules will be very useful
for various types of pedigrees, such as pedigrees con-
taining many members with no children, pedigrees with
small families, or pedigrees with very big families.

We performed experiments with the data deduc-
tion rules to see how efficient these rules are to
reduce the sizes of pedigree graphs. We generated 20
random and highly complex pedigrees with many
cycles based on the method presented in. Each mem-
ber can have many spouses and some of its spouses
can be its children or grandchildren. These pedigree
structures may not be common for human but
would be easily found in other species such as goats,
fish, and horses. The numbers of members in
families vary from 1000 to 10000; each member has
two sites. From these pedigree structures and their
genotype data, we constructed initial pedigree graphs
with the numbers of vertices varying from 496 to
5021, positive edges from 350 to 3991, and negative
edges from 90 to 936. Table 1 reports the numbers
of vertices and edges in initial graphs and reduced
graphs after the data deduction rules are used. The
experiment shows that our data deduction rules can
eliminate on average 99.5 % of vertices, and 99.6% of
positive and negative edges in pedigree graphs. The
data deduction rule program and test data are avail-
able at http://www.cs.unb.ca/profs/pevans/research/
dr.

Fixed-parameter algorithm
A NP-hard problem cannot be solved by a polynomial
time algorithm unless P=NP. However, if we can restrict
some parameters of the problem to small values, the
running time of an algorithm for the problem can
potentially be greatly reduced [13,14]. In this case, the
problem is a parameterized problem and an algorithm
that can solve the parameterized problem efficiently is a
fixed-parameter algorithm. Formal definitions of para-
meterized problem and fixed-parameter algorithm [14]
are as follows.
Definition 1A parameterized problem is a language L

⊆ Σ* × Σ*, where Σ is a finite alphabet. The second com-
ponent is called the parameter of the problem.
Practically, the parameter is a nonnegative integer or a

set of nonnegative integers and therefore L ⊆ Σ* × N.
For (x, k) Î L, the size of the input is n = |(x, k)|, and
the parameter is k.
Definition 2A parameterized problem L is a fixed-

parameter tractable if it can be determined in f(k) · nO(1)

time whether or not (x, k) Î L, where f is a computable
function only depending on k. The corresponding class of
problems is called FPT.
A comprehensive survey of FPT problems can be

found in [13] and [14].

Transforming to bipartization by edge removal problem
We review an important property of a signed graph
given by [12].

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 6 of 10

http://www.cs.unb.ca/profs/pevans/research/dr
http://www.cs.unb.ca/profs/pevans/research/dr

Theorem 1Let G be a signed graph. If we replace each
edge with weight w(e) > 0 by two consecutive edges with
weight -w(e) to get a graph G′ then l(G) = l(G′).
Proof 20Suppose (V1, V2) is a cut of G such that l(V1,

V2) = l(G). We replace each positive edge e(u, v) by two
consecutive negative edges e(u, y) and e(y, v), where w(e
(u, y)) = w(e(y, v)) = –w(e(u, v)) and y is a new vertex
adjacent only to u and v. If u and v belong to the same
partition we put y in a different partition from the parti-
tion of u and v. If u and v belong to different partitions,
we arbitrarily put y in the same partition of either the
partition of u or v. In all of the cases above we find the
corresponding cut of G′, (,)V V1 2

′ ′ such
that l V V l V V(,) (,)1 2 1 2

′ ′ = . Therefore l(G′) ≤ l(G).
Conversely, if l V V l G(,) ()1 2

′ ′ = ′ and y is a new vertex,
then at least one edge incident to y is in the cut. We can
find a corresponding cut of G, (V1, V2) such
that l V V l V V(,) (,)1 2 1 2= ′ ′ . Therefore l(G′) ≥ l(G). Taken
together, we get l(G′) = l(G).
Based on this property, the pedigree graph is trans-

formed into a new graph by replacing every positive
edge by two consecutive negative edges and adding new
intermediate vertices. We obtain a new weighted graph
G′ with all negative weighted edges. The graph G′ still
has only O(n) vertices and O(n) edges. Equation 1
becomes

w e k
e E Eneg

()
\

≤
∈ ∗
∑ (4)

This equation is to ensure that the total number of
edges within V1 and edges within V2 is at most k. These
edges once removed will make the graph bipartite.
To make the GBER algorithm [15] works on our par-

tially colored graph, we merge all red vertices into one
red vertex and all green vertices into one green vertex.
We relabel the merged red vertex and the merged green
vertex into two grey vertices, and insert k + 1 negative
edges between them. We further transform our negative
graph into a new graph with all positive edges by multi-
plying the weight of every edge by -1. Our problem
becomes the Bipartization by Edge Removal problem
[15,16]. The k-Bipartization by Edge Removal problem is
defined as follows.
Definition 3Given a graph G = (V, E) and a positive

integer k, is there a set C ⊆ E with |C| ≤ k whose
removal produces a bipartite graph?
Bipartization by Edge Removal is a classical NP-hard

problem and is in FPT [15,16]. Its parametric dual is
Max-Cut [17].

FPT Algorithm for bipartization by edge removal
One efficient technique to tackle an FPT problem is
iterative compression. It is first proposed by [16] in a
breakthrough paper and has been shown to very useful
for solving different minimization problems. The idea is
that, given a solution of size (k + 1), we find a fixed-
parameter algorithm that either constructs a solution of
size k if one exists or outputs No if no solution exists.
We iteratively compress the problem by reducing the

Table 1 Pedigree graphs before and after data deduction rules are used

of
members

of vertices in
initial graph

of positive edges in
initial graph

of negative edges
in initial graph

of vertices in
reduced graph

of positive edges in
reduced graph

of negative edges in
reduced graph

1000 496 350 90 5 1 3

1500 769 509 100 6 5 1

2000 1022 685 186 5 2 2

2500 1248 771 167 6 5 1

3000 1553 1049 202 6 5 1

3500 1752 1230 268 18 11 5

4000 1991 1395 339 7 3 3

4500 2216 1655 415 7 4 2

5000 2535 2006 440 10 4 5

5500 2815 2371 556 11 9 1

6000 2037 1953 451 17 11 5

6500 3242 2142 484 14 11 2

7000 3486 2199 484 10 3 5

7500 3662 2668 661 16 9 5

8000 4972 3052 764 5 1 3

8500 4143 2464 506 7 7 1

9000 4444 3088 781 20 10 9

9500 4735 3365 867 14 6 6

10000 5021 3991 936 18 8 9

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 7 of 10

size of its solutions step by step. Assuming the running
time of the FPT algorithm is O(f(k) · nO(1)), the overall
running time will be O(n · f(k) · nO(1)).
Iterative compression technique is used by Guo et al.

[15] to solve the Bipartization by Edge Removal problem
with a running time of O(2k · m2), where k is the num-
ber of edges to be deleted to make the graph bipartite.
The main idea of the algorithm is as follows.
Given a graph G = (V, E) where E = {e1, …, em}. Let Gi

be a graph induced by edges {e1, …, ei} of G (1 ≤ i ≤ m).
If i = 1, the optimal edge bipartization set of G1 is
empty. If i > 1, let X be an optimal edge bipartization
set of Gi = G[e1, …, ei] and |X| = k′. Consider graph Gi

+1 = G[e1, …, ei+1]. If X is not an optimal edge bipartiza-
tion set for Gi+1 then X′ = X ∪ {ei+1} is clearly an opti-
mal edge bipartization set for Gi+1. From the edge
bipartization set X′ of size k′ + 1, we find an edge bipar-
tization of size at most k′ or show that no such edge
bipartization of size at most k′ exists. The algorithm
assumes that an edges bipartization Y which is smaller
than X′ must be disjoint from X′, Y ∩ X′ = ø. This
assumption can be made without loss of generality by a
simple graph transformation. We replace each edge in X
′ by three consecutive edges and choose the middle edge
to be in the new X′. This graph transformation preserves
the parities of lengths of all cycles. Therefore the trans-
formed graph has an edge bipartization set of size k′ if
an only if the original graph has an edge bipartization
set of size k′. Let mapping F: V(X′) ® {A, B} be a valid
partition of V(X′) if for each {y, z} Î X, we have F(y) ≠
F(z). Let AF be F–1(A) and BF be F–1(B). We enumer-
ate all 2k′ valid partitions F of V(X′). For each valid par-
tition F we find a minimum edge cut Y in G\X′
between AF and BF. In other words, we use X′ to par-
tially color G and from the partially colored graph we
compute a smaller bipartization set Y. This compression
step is the core of the algorithm. We have the following
theorem from [15].
Theorem 2Consider a graph G = (V, E) and a mini-

mal edge bipartization set X′ for G. For a set of edges Y
⊆ E with X′ ∩ Y = ø, the followings are equivalent:
(1) Y is an edge bipartization set for G.
(2) There is a valid partition F for V(X′) such that Y is

an edge cut in G\X′ between AF=F
–1(A) and BF=F

–1

(B).
Consider a graph G in Figure 3.a where ⊕ denotes a

red vertex, ⊘ denotes a green vertex, and O denote a
grey vertex. A minimal edge bipartization set X′ illu-
strated by dashed lines is given in Figure 3.b. We com-
pute a mincut Y for G\X′ as in Figure 3.c and Y is the
minimum mincut for G in Figure 3.d.
Theorem 3The 2-site-MRHCk problem is solvable in O

(2k · n2) time.

Proof 21Setting up the pedigree graph takes O(|V|)
time. Transforming the pedigree graph into a graph with
all negative edges takes O(|E|) time and transforming the
negative graph into a graph with all positive edges takes
O(|E|) time. The Bipartization by Edge Removal problem
can be solved in O(2k · m2). Our graph is sparse with the
number of edges linear in the number of vertices, so the
overall running time of our algorithm is O(2k · n2).

Extensions to pedigrees with more than two sites
Our method can be extended to work with pedigrees
with more than two sites. In order to detect a recombi-
nation event in a member, it is necessary to have at
least two heterozygous sites; one on each side of the
recombination breakpoint. For example, we cannot
detect a recombination between sites 1 and 2 of mem-
ber u in Figure 2.a because the two haplotypes of u
would be the same. However, we may able to detect a
recombination between sites 1 and 3 of member u in
Figure 4.a by comparing its different haplotype versions.
We will capture constraints between pairs of closest het-
erozygous sites and pairs of closest homozygous sites
between members and use them to detect recombina-
tion events. We create a grey vertex between two closest
homozygous sites, and a red or green vertex between
two closest homozygous sites of a members, depending
on their genotype data. A vertex uij is created between
site i and site j of a member u. For example, we create a
grey vertex u13 between site 1 and site 3, and a grey ver-
tex u34 between site 3 and site 4 of member u. We
insert a positive edge between a parental vertex uij and
a child vertex cij. For example, we insert a positive edge
between vertex u34 and vertex c34 in Figure 4.a. We
insert a negative edge between two parental vertices uij
and vij if there is not a vertex between sites i and j of
their common child c.
The main difference between a pedigree with two sites

and a pedigree with multiple sites is that besides vertices
and edges created between closest heterozygous sites
and closest homozygous sites, we may need to create
additional vertices and edges for pedigrees with multiple
sites to capture all constraints in a pedigree. For exam-
ple, Figure 4.c shows an additional vertex c13 is created
in c and a positive edge is inserted between vertices u13
and c13 to capture constraint between sites 1 and 3 of u
and c. The number of total vertices in a member includ-
ing additional vertices can be O(m2), where m is the
number of sites in a members.
Additional vertices and edges are created in a member

by the need of its adjacent members. They actually
represent overlapped information. For example, vertex
c13 can be represented by vertices c12 and c23. Thus
when we solve the pedigree graph, we have to ensure

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 8 of 10

that vertices are resolved consistently. For example, if
vertices c12 and c23 are later resolved green and vertex
c13 is resolved red, there is a parity conflict. The reason
is that h1c[1] = h1c[2] = h1c[3] for green vertices c12 and
c23. However, h1c[1] ≠ h1c[3] for red vertex c13. There-
fore, a fixed-parameter algorithm for general pedigrees
with multiple sites needs to ensure information

consistency. We will investigate this problem in our
future work.

Conclusion
We have shown that the MRHC problem for general
pedigrees with two sites can be reduced to the line
index of a signed graph, and the line index of a signed

Figure 3 Compression step. The edge bipartization set is compressed by finding a mincut.

Figure 4 Graphs from a pedigree with multiple sites. Additional vertices are needed in order to capture the relationships between multiple
pairs of sites in adjacent members of the pedigree.

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 9 of 10

graph can, in turn, be reduced to the Bipartization by
Edge Removal problem. Therefore we can solve the
MRHC problem for general pedigrees with two sites
with an O(2k · n2) fixed-parameter algorithm. Future
work will extend the current method to deal with
genetic data with more than two sites.

Acknowledgements
This research was funded by the Natural Sciences and Engineering Research
Council of Canada through Discovery Grant 204923 to P.A. Evans.
This article has been published as part of BMC Proceedings Volume 5
Supplement 2, 2011: Proceedings of the 6th International Symposium on
Bioinformatics Research and Applications (ISBRA’10). The full contents of the
supplement are available online at http://www.biomedcentral.com/1753-
6561/5?issue=S2.

Authors’ contributions
DDD designed the algorithm and drafted the manuscript. PAE supervised
the research, assisted in crafting the algorithm and polished the manuscript.
Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 28 April 2011

References
1. Gusfield D: An Overview of Combinatorial Methods for Haplotype

Inference. Computational Methods for SNPs and Haplotype Inference 2002,
9-25.

2. Chan BMY, Chan JWT, Chin FYL, Fung SPY, Kao MY: Linear-Time Haplotype
Inference on Pedigrees Without Recombinations. WABI 2006, 56-67.

3. Doan DD, Evans PA, Horton JD: A Near-Linear Time Algorithm for
Haplotype Determination on General Pedigrees. Journal of Computational
Biology 2010, 17(10):1333-1347.

4. Xiao J, Liu L, Xia L, Jiang T: Fast elimination of redundant linear equations
and reconstruction of recombination-free mendelian inheritance on a
pedigree. SODA ’07: Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics; 2007, 655-664.

5. Zhang K, Sun F, Zhao H: HAPLORE: a program for haplotype
reconstruction in general pedigrees without recombination.
Bioinformatics 2005, 21:90-103.

6. Li J, Jiang T: Efficient rule-based haplotyping algorithms for pedigree
data. RECOMB ’03: Proceedings of the seventh annual international conference
on Research in computational molecular biology New York, NY, USA: ACM
Press; 2003, 197-206.

7. Liu L, Xi C, Xiao J, Jiang T: Complexity and approximation of the
minimum recombinant haplotype configuration problem. Theoretical
Computer Science 2007, 378:316-330.

8. Qian D, Beckmann L: Minimum-recombinant haplotyping in pedigrees.
Am. J. Hum. Genet. 2002, 70(6):1434-1445.

9. Li J, Jiang T: Efficient Inference of Haplotypes from Genotypes on a
Pedigree. J. Bioinformatics and Computational Biology 2003, 1:41-70.

10. Li J, Jiang T: An exact solution for finding minimum recombinant
haplotype configurations on pedigrees with missing data by integer
linear programming. RECOMB ’04: Proceedings of the eighth annual
international conference on Research in computational molecular biology New
York, NY, USA: ACM Press; 2004, 20-29.

11. Xiao J, Lou T, Jiang T: An Efficient Algorithm for Haplotype Inference on
Pedigrees with a Small Number of Recombinants (Extended Abstract).
17th Annual European Symposium on Algorithms 2009 Springer-Verlag LNCS;
2009, 325-336.

12. Xu S: The line index and minimum cut of weighted graphs. Journal of
Operational Research 1998, 109:672-682.

13. Downey RG, Fellows MR: Parameterized Complexity. Springer-Verlag; 1999.
14. Niedermeier R: Invitation to Fixed-Parameter Algorithms. Oxford

University Press; 2006.

15. Guo J, Gramm J, Huffner F, Niedermeier R, Wernicke S: Compression-based
fixed-parameter algorithms for feedback vertex set and edge
bipartization. J. Comput. Syst. Sci. 2006, 72(8):1386-1396.

16. Reed B, Smith K, Vetta A: Finding odd cycle transversals. Operations
Research Letters 2004, 32:299-301.

17. Karp RM: Reducibility Among Combinatorial Problems. In Complexity of
Computer Computations. New York: Plenum;Miller RE and Thatcher JW
1972:85-103.

doi:10.1186/1753-6561-5-S2-S6
Cite this article as: Doan and Evans: Haplotype inference in general
pedigrees with two sites. BMC Proceedings 2011 5(Suppl 2):S6.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Doan and Evans BMC Proceedings 2011, 5(Suppl 2):S6
http://www.biomedcentral.com/1753-6561/5/S2/S6

Page 10 of 10

http://www.biomedcentral.com/1753-6561/5?issue=S2
http://www.biomedcentral.com/1753-6561/5?issue=S2
http://www.ncbi.nlm.nih.gov/pubmed/15231536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11992251?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Concepts
	Methods
	Label members
	Insert positive edges
	Insert negative edges
	Process unlabeled members
	Pedigree graph
	Signed graph

	Data deduction rules
	Fixed-parameter algorithm
	Transforming to bipartization by edge removal problem
	FPT Algorithm for bipartization by edge removal
	Extensions to pedigrees with more than two sites

	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	References

