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Abstract

Background: The assignment of DNA samples to coarse population groups can be a useful but difficult task. One
such example is the inference of coarse ethnic groupings for forensic applications. Ethnicity plays an important role
in forensic investigation and can be inferred with the help of genetic markers. Being maternally inherited, of high
copy number, and robust persistence in degraded samples, mitochondrial DNA may be useful for inferring coarse
ethnicity. In this study, we compare the performance of methods for inferring ethnicity from the sequence of the
hypervariable region of the mitochondrial genome.

Results: We present the results of comprehensive experiments conducted on datasets extracted from the mtDNA
population database, showing that ethnicity inference based on support vector machines (SVM) achieves an overall
accuracy of 80-90%, consistently outperforming nearest neighbor and discriminant analysis methods previously
proposed in the literature. We also evaluate methods of handling missing data and characterize the most
informative segments of the hypervariable region of the mitochondrial genome.

Conclusions: Support vector machines can be used to infer coarse ethnicity from a small region of mitochondrial
DNA sequence with surprisingly high accuracy. In the presence of missing data, utilizing only the regions common
to the training sequences and a test sequence proves to be the best strategy. Given these results, SVM algorithms
are likely to also be useful in other DNA sequence classification applications.

Introduction
Human ethnic identity is a controversial and complex
topic. Each human individual is a complex mosaic of
genetic material originating from a multitude of ances-
tral sources. However, despite this complexity, the divi-
sion of humans into coarse ethnic groupings can greatly
assist forensic investigators and is also increasingly
being used as a predictor of drug effectiveness in the
emerging fields of personalized medicine and race-based
therapeutics. Self-reported and investigator-assigned eth-
nicity typically rely on the subjective interpretation of a
complex combination of both genetic and non-genetic

information including behavior, cultural and societal
norms, skin color, and other influences. For this reason,
attempts to accurately infer probable coarse ethnic iden-
tity can be difficult in contexts with limited access to
most informative markers, such as skin and hair sam-
ples. In these situations genetic information can be
extremely valuable to forensic pursuits by significantly
enhancing the accuracy of coarse ethnic classification in
these contexts.
Several approaches to genetic-based inference of eth-

nicity have been proposed in the literature. In particular,
the use of panels of autosomal markers have been
shown to provide excellent accuracy for assigning sam-
ples to specific clades [1,2]. Unfortunately, these
approaches rely on typing large numbers of autosomal
loci that may not survive long periods of degradation.
Mitochondrial DNA, however, due to its high-copy
number, is recoverable even from minute or highly
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degraded samples. Furthermore, due to its high poly-
morphism and maternal inheritance, mitochondrial
DNA has proved to be an excellent marker for the infer-
ence of ethnic affiliation. Indeed, several studies includ-
ing [3-5] have previously shown the feasibility of
inferring the probable ethnicity and/or geographic origin
from the sequence of the hypervariable region (HVR) of
the mitochondrial genome. These studies clearly demon-
strate that, although the mitochondrial sequence alone
does not by itself determine one’s ethnicity, the two are
nevertheless strongly associated.
In this paper we test the utility and robustness of sev-

eral methods for the classification of HVR mitochondrial
sequences into coarse ethnic groups as previously
assigned by investigators from the FBI, self-assigned by
study subjects, or by anthropologists. The goal was to
identify a method that could most accurately reproduce
these classifications using only a small region of the
mitochondrial genome. As Egeland et al. [5], we con-
sider a supervised learning approach to ethnicity infer-
ence. In this setting, mtDNA sequences with annotated
ethnicity are used to “train” a classification function that
is then used to assign ethnicities to new mtDNA
sequences. Adopting this approach allows us to draw on
the large body of knowledge developed within the
machine learning community (see, e.g., [6]). The main
goal of the paper is to assess the performance of four
well-known classification algorithms (support vector
machines, linear discriminant analysis, quadratic discri-
minant analysis, and nearest neighbor) on a variety of
benchmark datasets including realistic levels of missing
data and training data bias.
Comprehensive experiments conducted on mtDNA

profiles extracted from the mtDNA population database
[7] show that the support vector machine algorithm is
the most accurate of compared methods, outperforming
both discriminant analysis methods previously employed
in [3-5]) as well as a nearest neighbor algorithm similar
to that used for haplogroup inference in [8]. In both
cross-validation and experiments conducted on indepen-
dently collected training and test data, SVM achieves an
overall accuracy of 80-90%, matching the accuracy of
human experts making ethnicity assignments based on
physical measurements of the skull and large bones
[9,10], and coming close to the accuracy achieved by
using approximately sixty autosomal loci [11]. These
results demonstrate that SVM effectively classifies
sequences from a small segment of the mitochondrial
genome and that these classifications can be used to
predict the probable assignment of coarse ethnicity with
reasonable accuracy. The superiority of SVM in this
classification problem suggests that it is also likely to be
superior in similar sequence classification applications.

Methods
In this section, we introduce the four methods of ethni-
city assignment investigated in this study and the data-
sets used to evaluate their empirical performance. We
begin by briefly introducing principal component analy-
sis (PCA), a dimensionality reduction technique used as
a preprocessing step for three of the four methods. We
then describe the four classification algorithms – sup-
port vector machines (SVM), linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA) and 1-
nearest neighbor (1NN). Finally, we describe the data-
sets used for evaluation, the conversion of mtDNA
sequence profiles into feature vectors, and methods of
encoding sequences with missing regions.

Principal component analysis
PCA (see [6] for an introduction) is a factor analysis
technique of dimensionality reduction. Given m samples
over n variables, the m samples can be represented as a
m × n matrix X. We further assume that the sample
mean of each variable is 0, that is, ∑ ==i

m
ij1 0X for

every j. Projecting the m samples onto n new axes yields
another m × n matrix Y = XP, where P is a n × n
orthogonal matrix whose columns are unit vectors
defining the n new axes. PCA finds a P such that the
sample covariance matrix of the n new variables is a
diagonal matrix, that is,

∑ = = =Y Y Y = XP XP P P DX
1 1
m m

Τ Τ Τ( ) ,£ (1)

where D is a diagonal matrix, and ΣX and ΣY are the
sample covariance matrices of the original and new vari-
ables, respectively. The orthogonal matrix P can be
easily obtained by eigenvalue decomposition of ΣX. PCA
is a dimensionality reduction technique in that only k of
the n new variables are kept for further analysis. A stan-
dard approach is to pick the k variables with the largest
sample variances. Therefore, all we need to do is to pick
the value of k. Fortunately, when PCA is used in con-
junction with supervised learning algorithms like classifi-
cation algorithms, the best value of k can be selected by
performing cross-validation. In this study, k was selected
by performing 5-fold cross-validation (CV) on the train-
ing data for each combination of dataset and classifica-
tion algorithm.

Classification algorithms
Support vector machines
The SVM [12] is a binary classification algorithm. In the
case of perfectly separable classes, SVM seeks a separating
hyperplane with maximum margin, while for non-separ-
able classes the goal is to maximize a linear combination
of the separation margin and the total amount by which
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SVM predictions fall on the wrong side of their margin.
Given n-element feature vectors xi, i = 1,…, m, and an m-
element label vector y such that yi ? {1, –1}, this amounts
to solving the following optimization problem:

min
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where C > 0 is a penalty constant, ξi is the slack vari-
able allowing misclassification of sample i, F(⋅) is a
function that maps xi to a high-dimensional space, often
called the feature space, and b, b0 define the optimum
separating hyperplane bTz + b0 = 0 in feature space.
Once the optimal separating hyperplane is found, a test
sample t is classified according to the sign of bTF(t) +
b0.
In practice, the solution to the convex optimization

problem (2) is obtained by solving the so-called Wolfe
dual. Instead of explicitly mapping samples to the fea-
ture space, solving the dual requires only a kernel func-
tion K(x1,x2) = F(xι)

TF(x2), which implicitly maps
samples to the feature space and simultaneously com-
putes the inner product [12]. In this study, we used the
software package LIBSVM [13] to conduct all SVM
experiments. LIBSVM uses the “one-against-one”
approach [14] when more than two classes are present.
For all SVM experiments we used the radial basis kernel
K(x1,x2) = exp(-g|x1-x2|2), where g is a parameter. The
penalty constant C and the parameter g were tuned
using 5-fold cross-validation on the training data.
Linear and quadratic discriminant analysis
LDA and QDA assume that for each class the feature
vectors follow a multivariate normal distribution [6].
That is, the conditional probability of a sample x given
that it belongs to class g is given by
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By applying Bayes’ theorem, we obtain the posterior
distribution as follows.
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where πg is the prior probability of class g. The para-
meters of the multivariate normal distribution are esti-
mated using the training dataset. LDA assumes that the
classes have a common covariance matrix (i.e., Σg = Σ
for every g) therefore fewer parameters need to be esti-
mated for LDA compared to QDA. For both methods, a

given test sample t is assigned to the class with the
highest posterior probability
argmaxg Pr(G = g|X = t).
In this study, we used MCLUST Version 3 [15] to

conduct all LDA and QDA experiments.
1-nearest neighbor (1NN)
1NN is a simple non-parametric classification algorithm,
which does not have a training process. Given a set of
reference samples and a test sample, 1NN searches the
reference dataset for the sample nearest to the test sam-
ple and assigns the test sample to the class to which the
nearest sample belongs. In case there are multiple near-
est reference samples, voting is used to assign the test
sample to the class containing the largest number of
nearest reference samples. As discussed below, mtDNA
profiles are encoded into binary feature vectors. We
used the number of mismatch positions (a.k.a. the Ham-
ming distance) to measure the distance between sam-
ples, and did not apply PCA to the data before applying
1-NN.

Datasets
We used the forensic and published tables in the
mtDNA population database [7] to empirically evaluate
the performance of the four algorithms for ethnicity
assignment. The forensic table contains 4,839 samples
collected and typed by the Federal Bureau of Investiga-
tion (FBI), while the published table contains 6,106 sam-
ples collected from the literature.
In this study, we focus only on the samples annotated

as belonging to one of the four coarse ethnic groups –
Caucasian, African, Asian and Hispanic. Filtering the
forensic and published tables by this criteria results in
4,426 and 3,976 samples, respectively. In the rest of the
paper we will refer to the two filtered tables simply as
the forensic and published datasets. The forensic dataset
contains 1,674 Caucasian (37.8%), 1,305 African (29.5%),
761 Asian (17.2%) and 686 Hispanic (15.5%) samples,
while the published dataset is comprised of 2,807 Cau-
casian (70.6%), 254 African (6.4%) and 915 Asian (23%)
samples.
Additional file 1 shows the percentage of samples

sequenced at each position for the forensic and pub-
lished datasets. We note that the forensic dataset has a
significantly better coverage than the published dataset.
All the samples in the forensic dataset cover portions of
both hypervariable region 1 (HVR1) and hypervariable
region 2 (HVR2) of mtDNA, whereas over 60% of sam-
ples in the published dataset do not cover HVR2 and
around 5% of them do not cover HVR1.
To better characterize and compare the forensic and

published datasets, we assign each sample in the two
datasets to one of the 23 basal haplogroups defined in
[8]. Haplogroup assignment was performed using the
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unweighted 1NN algorithm described in [8] along with
the Genographic Project open resource mitochondrial
DNA database (the consented database) of 21,164 sam-
ples [16]. Behar et al. [8] reported a leave-one-out cross-
validation accuracy of 96.72% on a reference database of
16,609 samples. We observed a comparable accuracy of
96.51% on the consented database. Therefore, we expect
the inferred haplogroups of samples in the forensic and
published datasets to have a similarly high accuracy.
The ethnicity composition of each haplogroup and the
inferred haplogroup composition of each broad ethnic
group represented in the forensic and published datasets
are given in Additional file 2. Additional file 2(A) sup-
ports the well known fact that many haplogroups are
strongly associated with a specific ancestry. For example,
most samples with inferred haplogroup H, J, K, R0*, T,
U*, and V are Caucasian, most samples with inferred
haplogroup B, D, M, N, and R9 are Asian, and most
samples with inferred haplogroup L are African. How-
ever, the association is not perfect, and significant per-
centages of these haplogroups are present in other
ethnic groups. For some haplogroups, such as B, N1*,
W, and X the association with ethnicity is particularly
weak, with two or three ethnicities being represented in
almost equal proportions. Additional file 2 further
shows that the forensic and published datasets have sig-
nificant differences in their ethnic and haplogroup com-
positions. Most strikingly, Caucasians are significantly
over-represented and Hispanics are completely missing
from the published dataset. Such differences are most
likely due to the procedure used to assemble the pub-
lished dataset, and reflects preferential use of samples
from some ethnic groups in published studies.
For some of the experiments described in the Results

section, we used specific subsets of the forensic and
published datasets. The full-length forensicdataset con-
sists of the 1,904 samples typed for the most extensive
ranges of HVR1 (16024–16569) and HVR2 (1–576).
This dataset is comprised of 222 Caucasian (11.7%), 820
African (43.1%), 415 Asian (21.8%) and 447 Hispanic
(23.5%) samples. The trimmed forensic dataset was pro-
duced by trimming the samples in the forensic dataset
such that only the region of 16024–16365 in HVR1 is
kept. It has the same ethnicity composition as the foren-
sic dataset since all samples in the forensic dataset are
typed in this range. The trimmed publisheddataset was
created in a similar fashion, except that only 2,540 sam-
ples covering the 16024-16365 region were kept. This
subset contains 1,956 Caucasian (77%), 134 African
(5.3%) and 450 Asian (17.7%) samples.

Encoding mtDNA profiles into feature vectors
Each sample in the forensic and published datasets is
given as a list of polymorphic changes when compared

to the revised Cambridge Reference Sequence (rCRS).
For example, 16298C denotes a substitution at position
16298 and 16124.1C denotes the insertion of a C after
position 16124. For a fixed dataset, we represent each
sample as an n-element binary vector, where n is the
number of unique polymorphisms present in the data-
set. An element in the binary vector of a sample is set
to 1 if the sample harbors the corresponding poly-
morphism, and to 0 otherwise. This encoding method
works well when all the samples in the dataset are
sequenced over the same or very similar ranges. An
example is the forensic dataset, in which all samples
cover range 16024-16365 of HVR1 and range 73-340 of
HVR2. While most of our experiments were obtained
using the above binary encoding, we also discuss and
evaluate in the Results section several alternative
schemes for encoding mtDNA profiles with significant
amounts of missing data.

Results
Comparison of the four classification algorithms
For an initial evaluation of the four classification algo-
rithms, we performed cross-validation (CV) analysis
using the trimmed forensic dataset. Cross-validation is
one of the simplest and most widely used methods for
estimating the accuracy of classification algorithms.
Briefly, available samples are randomly split into K
roughly equal parts, and then each part is used to evalu-
ate classification accuracy of a model trained on the
remaining K – 1 parts. In our experiments we used K =
5, i.e., 5-fold cross-validation.
In addition to ethnicity-wise average accuracies, we

also use micro- and macro-accuracy as measures of the
overall performance of the classification algorithms.
These metrics, similar to the micro-average and macro-
average of [17], are defined as follows:

Micro-Accuracy = ∑
∑
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where K is the number of classes in the dataset, Ni is
the number of samples in class i and Ci is the number
of samples correctly labeled by the classifier in class i.
Note that micro- and macro-accuracy become the same
when classes sizes are balanced, i.e., N1 = N2 = ... = NK.
For imbalanced class sizes, micro-accuracy tends to
over-emphasize the performance on the largest classes
compared to macro-accuracy, which gives equal weight
to the accuracy achieved for each class.
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Table 1 summarizes the 5-fold CV accuracy metrics
for PCA-QDA, PCA-LDA, 1NN, and PCA-SVM on the
trimmed forensic dataset. PCA-SVM consistently out-
performs the other three classification algorithms with
respect to all accuracy measures. Since the performance
of different classification algorithms may depend signifi-
cantly on the typed mtDNA region, we conducted three
additional experiments to assess its effect on the classifi-
cation accuracy of the four compared algorithms. In all
three of them we started from the full-length forensics
dataset. In the first experiment, we iteratively deleted
10% of the polymorphisms, starting from the HVR2 end
non-adjacent to HVR1. Similarly, in the second experi-
ment, we iteratively deleted 10% of the polymorphisms
starting from the HVR1 end non-adjacent to HVR2.
Finally, in the third experiment, we used a sliding win-
dow approach to generate 20 different datasets, each of
which retained from the full-length forensics profiles
10% of the nucleotides.
Figure 1 gives the 5-fold CV micro-accuracy achieved

by PCA-QDA, PCA-LDA, 1NN, and PCA-SVM in these
three experiments. Again, PCA-SVM consistently out-
performs the other three classification algorithms inves-
tigated in this study. PCA-QDA is typically
outperformed by the other methods, except that it out-
performs 1NN when the entire HVR is used. 1NN and
PCA-LDA have comparable performance, but PCA-LDA
performs slightly better than 1NN for near-complete
mtDNA profiles. Conversely, 1NN performs better than
PCA-LDA for some short typed regions. Indeed, for
short windows consisting of only 10% of the nucleotides
in the entire dataset, the performance of 1NN is often
as good as that of PCA-SVM, see Figure 1(C).
Figure 1(C) further shows that, regardless of the classi-

fication method used, certain regions of HVR1 and
HVR2 are more informative than others for the purpose
of ethnicity inference. Additional file 3 gives the 5-fold
CV micro-accuracy for 6 selected windows of 165-
271bp spanning the most informative regions of HVR1
and HVR2. Interestingly, when using about 200bp from
the information-rich region of HVR1, PCA-SVM yields

a microaccuracy of over 80%, very close to the microac-
curacy achieved on this set when using the entire HVR
region, i.e., HVR1+HVR2.

Validating SVM on independent test data
Cross-validation may overestimate the practical perfor-
mance of classifiers since it ignores potentially signifi-
cant biases in the assembly of reference databases. To
obtain a more reliable estimate for the practical accu-
racy of PCA-SVM, we evaluated its performance using
the trimmed forensic dataset as training data and the
trimmed published dataset as test data. Table 2 gives
the so called confusion table for this experiment. There
is no “Hispanic” row since there are no samples anno-
tated as Hispanic in the trimmed published dataset used
for testing. Since the Hispanic samples are present in
the trimmed forensic dataset used for training, test sam-
ples may be mis-classified as Hispanic, and thus we do
include a “Hispanic” column. PCA-SVM micro-accuracy,
as well as ethnicity-wise accuracies for the Caucasian
and African ethnic groups are similar to the cross-vali-
dation results in Table 1. However, ethnicity-wise accu-
racy for the Asian group is almost 17% lower than the
accuracy achieved in the cross-validation experiment.
This is largely explained by large mismatches between
Asian profiles used for training and testing in this
experiment. The 761 Asian profiles in the Forensic data-
set used for training come from only 5 countries: China
(356 profiles), Japan (163), Korea (182), Pakistan (8),
and Thailand (52), with a strong bias towards East Asia.
Not surprisingly, a large percentage of misclassifications
errors (90 out of the total of 145) are for profiles col-
lected from two countries (Kazakhstan and Kyrgyzstan)
that are not represented in the training dataset. Profiles
with unknown country of origin are also poorly classi-
fied (10 errors out of 22 samples) suggesting that they
may come from regions that are poorly represented in
the forensics dataset too.

Comparison of methods for handling missing data
In practice, forensic mtDNA profiles are determined by
Sanger sequencing of PCR amplicons that span hyper-
variable regions HVR1 and HVR2. Different laboratories
use different PCR primer pairs, some of which amplify
only parts of HVR1 and HVR2. Quality trimming of
Sanger chromatograms further results in confident poly-
morphism calls for a (sample dependent) subinterval of
each amplicon. The end result are mtDNA profiles with
a variable degree of sequence coverage, i.e., with
unknown polymorphism status for some parts of HVR1
and/or HVR2. In the experiments reported in previous
sections we relied on training and test sequences cover-
ing essentially the same range, so missing data was not
an issue. In this section we reassess the accuracy of

Table 1 Comparison of 5-fold CV accuracy measures on
the trimmed forensic dataset

# Samples Classification Algorithm

PCA-QDA PCA-LDA 1NN PCA-SVM

Caucasian 1674 83.15 90.2 93.73 94.62

Asian 761 72.93 74.11 83.31 84.76

African 1305 84.6 88.28 86.59 89.81

Hispanic 686 71.57 68.22 72.01 72.59

Micro-Accuracy 4426 80.03 83.46 86.47 88.10

Macro-Accuracy 4426 78.06 80.20 83.91 85.45
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PCA-SVM under more realistic levels of missing data.
Specifically, we report results of experiments performed
using as training and test data the (untrimmed) forensic
and published datasets, respectively; as shown in Addi-
tional file 1, the published dataset has indeed highly
non-uniform coverage of different HVR regions.
We investigated three different approaches of dealing

with missing data:

• rCRS. In this approach we simply assume that miss-
ing regions are identical to the rCRS. While easy to
implement, this scheme is likely to introduce a strong
bias towards the Caucasian ethnicity since the rCRS
sequence is of a Caucasian.
• Probability. In this approach we augment the fea-

ture encoding scheme described in the Methods section
by adding a set of l additional variables, where l is the

Figure 1 Effects of incomplete data on accuracy Comparison of PCA-QDA, PCA-LDA, 1NN, and PCA-SVM 5-fold CV micro-accuracy on regions
obtained by iteratively deleting groups of 10% polymorphisms starting from HVR1 towards HVR2 (A), respectively from HVR2 towards HVR1 (B),
and on sliding windows spanning 10% of the nucleotides in HVR1+HVR2 (C).
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total length of HVR1 and HVR2 in bases. For typed
bases, these variables hold the mutation status of the
base – 1 if there is a polymorphism at this base and 0
otherwise. For bases that are not covered by sequencing,
the corresponding variable is set to a fractional value
between 0 and 1 representing the polymorphism rate
observed at this position in the training data. While less
biased than the rCRS scheme, this scheme may still
introduce unwanted biases in case some ethnicities are
over- or under-represented in the training data.
• Common region. In this approach we compute, for

each test profile, the intersection between the region
sequenced in the test profile and each training sample.
Only these common regions of the training sequences
are then used to infer the ethnicity of the test sample.
The common region approach is computationally more
demanding than the other two, since it may require run-
ning PCA and training a new SVM for each test sample.
Additional file 4 summarizes the results obtained by

using the three approaches to handling missing data in
experiments in which the forensic and published data-
sets are used for training and evaluation classification
accuracy, respectively. Consistent to its bias towards
Caucasians, the rCRS approach has almost 97% accuracy
for this ethnicity but very much lower accuracy for
Asian and African ethnicities (about 31% and 59%,
respectively), resulting in relatively poor overall micro-
and macro-accuracies. The probability approach is still
biased towards the Caucasian ethnicity, although less
strongly than the rCRS approach. The best overall per-
formance is achieved by the common region approach,
which has micro- and macro-accuracies (as well as eth-
nicity-wise accuracies) very close to those observed in
the experiments performed on the trimmed forensic and
published datasets (see Table 2). This suggests that the
common region approach is a good method of dealing
with missing data, at least in conjunction with the PCA-
SVM method for ethnicity inference.
A potential concern with using the common interval

approach is that different amounts of training data are
used in classifying different test samples. This can make
it difficult to compare posterior probabilities returned
by classification methods such as SVM, and may partly

explain why, as shown in Additional file 5, SVM poster-
ior probabilities typically under-estimate the observed
accuracy.

Discussion
Correspondence between investigator assigned ethnicity
and mitochondrial haplogroup
Human mitochondrial haplogroups have arisen from
mutation and migration during human evolution. As
such, these haplogroups have been extremely powerful
tools in understanding human evolution and particularly
in understanding patterns of geographical migration of
human populations. Prior to modern travel, mitochon-
drial haplogroups were largely restricted to the geo-
graphic regions of their origin and subsequent
migration. For this reason, they are often superimposed
on maps of the globe as representative of the human
populations derived from those regions of the planet.
Similarly, but more crudely, the coarsest ethnic group-
ings of humans are also reflective of geographic ances-
try. Africans, Caucasians, and Asians all have clear
geographic associations, while Hispanic is often regarded
as a less well defined mix of New World and European
ancestry. Because of the clear associations of both mito-
chondrial haplogroups and ethnic categories with geo-
graphy, one might naively expect a simple correlation
between the two classifications. When we analyze the
association between mitochondrial haplogroup and
investigator assigned ethnicity however, we find a com-
plex relationship between the two categories. While, for
instance, there is broad correspondence between the L
haplogroups and African ethnicity assignments, African
ethnicity assignments are present to varying degrees in
virtually every haplogroup analyzed and almost every
haplogroup contains members of each of the four ethni-
cities. This is not particularly surprising due to the fact
that mitochondrial DNA represents only a very small
segment of the complex mosaic of a human’s genetic
ancestry, and it suggests that the ability to infer coarse
ethnic identity from mitochondrial sequence would be
very limited. In fact, however, we find that mitochon-
drial DNA can be used to infer the probable assignment
of coarse ethnicity with almost 90% accuracy, levels
approaching those obtainable with approximately sixty
autosomal loci [11]. This level of accuracy in predicting
investigator assigned ethnicity could be very useful in
forensic investigations.

Information content in HVR1 and HVR2
As noted above, there is a great deal of variability in the
precise regions of HVR1 and HVR2 genotyped in prac-
tice. Sequence coverage within the mitochondrial con-
trol region is often laboratory and/or study dependent.
Variability of these boundaries severely limits the utility

Table 2 Confusion table of the PCA-SVM test results on
the trimmed published dataset

True Ethnicity # Samples Predicted Ethnicity

Caucasian Asian African Hispanic

Caucasian 1956 92.59 5.47 1.53 0.41

Asian 450 25.78 67.78 3.11 3.33

African 134 5.22 3.73 87.31 3.73

Micro-Accuracy: 87.91%

Macro-Accuracy: 82.56%
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of individual datasets in the assembly of large datasets
representative of complex populations. Recently, Tzen et
al. [18] sought to redefine HVR1 on the basis of genetic
diversity and laboratory tractability. They show that the
237-bp segment from 16126-16362 (the “redefined”
HVR1, or rHVR1) had a global genetic diversity of
0.9905 and the 154-bp segment from 16209-16362 had
a global diversity of 0.9735, where the genetic diversity
for a sample with n haplotypes with population frequen-
cies xi, i = 1,…,n, is computed as ( ) / ( )1 11

2− −=Σ i
n

ix n n . The
results of [18] match very closely with our scans of the
inferential power of windows across the control region;
Tzen’s rHVR1 overlaps precisely with the region of
greatest discriminative power in HVR1. The correspon-
dence between these results suggests that HVR2 might
be similarly standardized to a region between 93-310,
where the greatest discriminative power of HVR2 is
found. The identification of small regions of sequence
that have maximal discriminative power could be quite
useful in forensic and anthropological settings where
severe degradation can limit the size of PCR products
recoverable from sample material. Di Bernardo et al.
[19] report that the longest amplifiable DNA fragments
extracted from 2000-year-old remains from Pompeii are
between 139 and 360 bp. Sequences of this size from
the most informative regions of HVR1 and HVR2 would
allow inference of coarse ethnic identity with reasonably
high accuracy.

SVM as classifier
Many applications in human genetics require the discri-
minative classification of samples into groups, and a
number of methods for this task have been proposed.
Lately, machine learning approaches have been used to
good effect in a number of biological scenarios including
the classification of Y-haplogroups [20]. In this study we
use support vector machines (SVM) to develop statisti-
cal models capable of predicting the ethnicity of mito-
chondrial DNA samples. We compare the performance
of SVM under simulations of real-world scenarios with
several other methods previously proposed for the clas-
sification of mitochondrial sequences into geographically
defined groups, including QDA and LDA [3-5]. In all
tests SVM provides accuracy greater or equal to that of
the other methods tested. SVM consistently provides
the best accuracy in simulations of degradation form
either end of the mitochondrial hypervariable regions,
and when small subsections of the hypervariable regions
are used. With only 218bp of mtDNA sequence, the
overall accuracy of SVM predictions exceeds 80%. The
success of SVM in this classification problem suggests
that it may also be the best method for related classifi-
cation problems including inferring the geographic ori-
gin of DNA samples [4,5], haplogroup membership [8],

drug response profiles [21], and other “race based” ther-
apeutics [22].
When applied to independent test data our SVM clas-

sifier performs reasonably well despite significant differ-
ences between the training and test sets. In particular,
the absence of a Hispanic classification in the published
dataset, and the inclusion of geographic regions in the
test set that are not represented in the training set (for
instance Kazakhstan and Kyrgyzstan) is likely to have
contributed significantly to errors in our inferences.
Such errors are likely to recede as larger, more geogra-
phically balanced training sets are assembled.

Handling missing data
In the last few years several authors have pointed out
the presence of sequence errors in public and forensic
mtDNA databases [23-27]. Moreover, precise boundaries
of HVR1 and HVR2 are not always consistent across
studies and real-world samples may be severely
degraded, further contributing to errors or missing data
in samples to be classified. We evaluated several statisti-
cal approaches to dealing with missing data and evalu-
ated these approaches for accuracy under simulated
scenarios of data dropout or loss. We found that despite
a small loss of accuracy incurred by data dropout,
restricting analysis to the region of intersection between
the test sample and training samples provides the most
reliable inference of the ethnicity of the sample.
Attempts to impute any missing data based on the rCRS
or a probabilistic model based of the training set
resulted in prediction bias toward Caucasian due to the
origin of the rCRS and the preponderance of Caucasian
samples in the FBI forensic data set. Until very large,
ethnically balanced training sets are available, restricting
analysis to the region of intersection between test and
training samples is likely to remain the most accurate
and unbiased approach to inference.

Conclusions
In this study, we compared four classification algo-
rithms for the prediction of probable assignment of
coarse ethnic identity using short DNA sequences
from the hypervariable region of mtDNA. Comprehen-
sive empirical studies showed that, regardless of
sequence length, support vector classification is the
most accurate classifier among those compared and
approaches 90% accuracy in predicting the assignment
of course ethnic identity. Our experiments also identi-
fied high accuracy segments in HVR, which agree well
with the genetically diverse regions reported in pre-
vious work. Finally, our experiments showed that, in
dealing with missing data, it is advisable to use only
segments shared by reference sequences and the
sequence under test.
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Additional material

Additional file 1: Coverage of samples Percentage of samples
covering each position of HVR1 and HVR2 in the forensic (A) and
published (B) datasets.

Additional file 2: Sample composition of the forensic and published
datasets Ethnicity composition of each haplogroup (A) and haplogroup
composition of each ethnic group (B) for the forensic and published
datasets.

Additional file 3: Accuracy of short segments of HVR Comparison of
PCA-QDA, PCA-LDA, 1NN, and PCA-SVM 5-fold CV micro-accuracy on 6
selected windows of 165-271bp spanning the most informative regions
of HVR1 and HVR2.

Additional file 4: Accuracy of PCA-SVM using different schemes for
handling missing data

Additional file 5: Calibration of PCA-SVM posterior probabilities for
the FBI published dataset The actual accuracy rates are slightly higher
than the estimated posterior probabilities.
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