
PROCEEDINGS Open Access

Managing and querying gene expression data
using Curray
Hasan Jamil*, Aminul Islam

From 6th International Symposium on Bioinformatics Research and Applications (ISBRA’10)
Storrs, CT, USA. 23-26 May 2010

Abstract

Background: In principle, gene expression data can be viewed as providing just the three-valued expression
profiles of target biological elements relative to an experiment at hand. Although complicated, gathering
expression profiles does not pose much of a challenge from a query language standpoint. What is interesting is
how these expression profiles are used to tease out information from the vast array of information repositories that
ascribe meaning to the expression profiles. Since such annotations are inherently experiment specific functions,
much the same way as queries in databases, developing a querying system for gene expression data appears to
be pointless. Instead, developing tools and techniques to support individual assignment has been considered
prudent in contemporary research.

Results: We propose a gene expression data management and querying system that is able to support pre-
expression, expression and post-expression level analysis and reduce impedance mismatch between analysis
systems. To this end, we propose a new, platform-independent and general purpose query language called Curray,
for Custom Microarray query language, to support online expression data analysis using distributed resources. It
includes features to design expression analysis pipelines using language constructs at the conceptual level. The
ability to include user defined functions as a first-class language feature facilitates unlimited analysis support and
removes language limitations. We show that Curray’s declarative and extensible features nimbly allow flexible
modeling and room for customization.

Conclusions: The developments proposed in this article allow users to view their expression data from a
conceptual standpoint - experiments, probes, expressions, mapping, etc. at multiple levels of representation and
independent of the underlying chip technologies. It also allows transparent roll-up and drill-down along
representation hierarchies from raw data to standards such as MIAME and MAGE-ML using linguistic constructs.
Curray also allows seamless integration with distributed web resources through its LifeDB system of which it is a
part.

Background
Much of the attention in microarray data management
so far has been in laboratory information management
systems (LIMS) as opposed to comprehensive microar-
ray data management systems (MADAMS). This is
because the main focus so far has been to bring chip
level data to a usable level so that expression profile can
be generated to select the differentially expressed genes

for onward analysis. Once differentially expressed genes
are at hand, the lower level data does not have much
usefulness and hence, does not demand much manage-
ment consideration. Another reason is that the use of
the differentially expressed genes from the gene expres-
sion data is highly context dependent and seems to be
completely orthogonal to the management and mainte-
nance of the expression data. So, researchers have
viewed such analysis as distinct applications as opposed
to data manipulation within the gene expression “data-
base” in its traditional sense.

* Correspondence: jamil@cs.wayne.edu
Department of Computer Science, Wayne State University, Michigan, USA
Full list of author information is available at the end of the article

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

© 2011 Jamil and Islam; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:jamil@cs.wayne.edu
http://creativecommons.org/licenses/by/2.0

LIMS systems such as BASE [1], MIMAS [2], EzArray
[3], and ArrayTrack [4] process raw expression data to
bring it to the level where differential expression analy-
sis can be performed. This step is usually called the pre-
expression analysis. In the expression analysis level, pop-
ular tools such as Bioconductor/R [5], or GSEA [6] algo-
rithm are used to find the differentially expressed genes.
The most common post-expression analysis includes
pathway analysis, functional annotation, comparison,
validation and publication of obtained data. These
operations are needed to ascertain the value of the gene
list of interest, and to weed out genes that may appear
in the list by mere chance.
The critical issue here is that each of the the post-

expression analysis needs are widely subjective. There is
no one simple or single method that can be used to per-
form such an analysis, e.g, functional annotation. The
outcome of the analysis depends greatly upon what
method is used. Researchers often discover errors in the
data at this stage, or find it necessary to revise how dif-
ferential expression is computed. Often there is a need
to iteratively update or recalibrate probe level or chip
level data in this process, and discover the right choice
of the tools to compute the differentially expressed set
of genes. Since the data needed are spread across multi-
ple systems and platforms, the associated the context
switch makes the process difficult. In this way, comput-
ing differentially expressed genes potentially is a truly
investigative and iterative process. We argue that
researchers need a single platform system that will allow
them to manage such revisions and changes with a few
key strokes.

Need for a declarative language for expression data
The lack of declarative query languages for microarray
data manipulation is remarkable, given that the commu-
nity is keenly aware of its potential. The emergence of
MIAME [7] actually acknowledges the fact that we need
a high level view for expression data that hides the
lower level physical view of the microarrays. ArrayEx-
press tool suit [8] provides library support for the
migration of Affymterix, Agilent and Illumina data to its
FGEM (Final Gene Expression Matrix) format, from
which conversion to MAGE-ML [9] or MAGE-TAB is
routine. While systems such as Bioconductor/R allows
analysis support for Affymterix in the form of a rich col-
lection of libraries, it also supports data in emerging for-
mats such as MIAME, MAGE-ML, MAGE-TAB and
ArrayExpress.
Although tool support for migration or data manage-

ment at a higher level exists, researchers seldom use this
level to process their data, except when they are forced
to do so to deposit the data in public repositories such
as ArrayExpress. One possible reason may be the

perceived loss of control over the data due to format
migration and abstraction (lower level representation
obviously has more detailed information that a Biologist
may need when a closer look at the data is needed).
Regardless of the reasons why advantages offered by
standards are not always exploited at the application
level, the practice wastes substantial time and resources.
Had there been a data management system that allowed
the flexibility to move up and down the data abstraction
hierarchies and offered the control a user seeks, they
would have overwhelmingly preferred to use the stan-
dard representation.
Two new approaches toward expression data manage-

ment and analysis can be envisioned. The first approach
is obvious - development of a new data management
system with a declarative query language for data
manipulation. The second is to move into package
based data analysis such as Bioconductor. We are not
aware of any serious high profile attempt to develop a
declarative language for microarray data management
other than the early project Expresso at Virginia Tech
[10]. Although this project attempted to create a
declarative approach to managing and querying expres-
sion data, it did so for a LIMS system which is not at
the level of Curray. Thus no significant advances have
been made in terms of a declarative query language for
data manipulation in Expresso. The ROOT system [11]
on the other hand advocated an alternative to Biocon-
ductor for massive data sets, including microarray
expression data. The question now is whether it is pos-
sible to develop a data management system and a query
language for expression data that does not depend upon
specific tools such as Bioconductor, and allows flexibility
in terms of data management. As a byproduct, it will
also offer seamless integration with other declarative
systems such as SQL, BioFlow [12,13] and Prolog, for
example, to allow access to conventional data and rea-
soning engines. We believe the answer is in the positive.

A canonical model for microarray data
Before we consider a model for microarray data, let us
revisit how microarray chips are designed at the concep-
tual level. For simplicity, we will refer to only Agilent
chips although the discussion uniformly applies to Affy-
metrix and Illumina chips, and the emerging Solexa
technology. Usually, an experiment e is designed to
gather expression values for different excitation condi-
tions for a particular set of genes G. These genes may
come from a set of control samples Gc and any number
of experimental sample sets Ge for the same set of genes
G. In other words, ∀g(g Î G ⇔ g Î Gc), and ∀g, e(g Î G
⇔ g Î Ge). Each gene g Î G is divided into kg number
of segments, called probes p, denoted pgi, such that
U i

k
g

g

i
p g= =1 . One experiment is usually composed of

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 2 of 12

multiple chips (one per condition c Î C), and often an
experiment is replicated several times (n) to ensure cor-
rectness. Therefore, the total number of chips T is equal
to n × |C|. Each chip contains spots or expression
values in the form of two colors (green and red) for sev-
eral probes under one excitation condition. Each spot
on a chip represents one probe of a gene under a given
condition that the chip represents. However, probes are
replicated m number of times within the chip again for
ensuring error free expression reading, such that some
form average of all m replicates of a probe p represents
its true expression. Finally, the total number of spots on
a chip is equal to m × ∑gÎGkg Conceptually, a microar-
ray experiment is as simple as this and the diagram in
Figure 1 can be used to adequately capture this
relationship.
Although the underlying relationship of the chips,

probes, genes and experiments is complex, our goal in
modeling experiments is to allow a uniform and very
high level view of a set of experiments in which
researchers will neither have to think in terms of such a
complex relationship, nor deal with the platform differ-
ence between the underlying technologies, i.e., Agilent,
Illumina and Affymetrix. Once the conceptual model is
understood, the technology specific details can be
handled by the system through an appropriate mapping.
Conceptually then, users should have the ability to refer
to experiments as a single object of interest, as a set of
genes in an experiment, or gene expression values with-
out any reference to any specific technology. Users
should also be able to select a subset of an experiment
based on any condition that describes that experiment.

For example, they should be able to ask questions such
as “what is the set of differentially expressed genes in
experiment epilepsy for conditions X, Y and Z”, or “what
is the set of differentially expressed genes in experiment
epilepsy for conditions X, Y and Z, and without consider-
ing the red channel and probe replicates having expres-
sion higher than θ”? These questions of course assume
that we have a procedure to compute differential expres-
sion in some coherent manner, and so on.
We are now ready to present our model. Let Ie, Ig, Ip,

Ir and Ic are sets of experiment, gene, probe, probe
replicate and chip identifiers respectively, and A be a set
of attributes with associated domain D. Then, an experi-
ment e Î E ⊆ Ie × D1× … × Dk such that Di are
domains corresponding to attributes AiA, and for ∀e1, e2
Î E, of the form <e1, d1,…,dk > and < ′ ′ >e d dk2 1, , ,K ,
e e d d d dk k1 2 1 1= →< >=< ′ ′ >, , , ,K K . In other words, experiments are
unique and identifiable using the experiment ID. In a
similar way, we define a chip as an association with
experiments as C ⊆ Ie × Ic × D1 × … × Dl over the attri-
butes Al. However, in the set C, Ic is unique (no two
tuples have the same chip ID). Similarly, we define a
gene as a set of unique objects G ⊆ Ig × D1 × … × Dm

such that Am is the set of attributes defining them, and
Ig is the set of unique identifiers. Since probes are seg-
ments of genes, we define probes as an association P ⊆
Ig × Ip × D1 × … x Dn, where attributes An describe the
probes, and Ip is the key. Finally, an expression is
defined as a many-many association between probes and
chips as Expr ⊆ Ip × Ic × Ir × D1 × … × Dj. Since we
allow multiple replicates of a probe in the same chip,
the identifying elements are Ip × Ic × Ir.

Figure 1 Conceptual relationship of objects in a microarry experiment.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 3 of 12

Mapping heterogenous experiments to canonical model
Once the canonical model is decided, we are left with
designing a user transparent mapping for each of the
microarray experiment types (Agilent, Affymetrix and
Illumina). Since the model for each of the technologies
is standard and the models come with well defined
schemes, designing a mapping M : F ® M, where F is
the set of format representation possible, each defined
as a set of tables, and M is a singleton containing our
canonical model as defined. For the sake of brevity, in
Figure 2 we partially show a possible mapping from Agi-
lent format to Curray as a set of SQL expressions that
can be cast into a function.

Recipe for Curray
To view all expression data uniformly, we plan to
make a clear separation between the conceptual com-
ponents of all expression data and their platform (tech-
nology, class and type) related components so that at
the application level, queries can be asked in uniform
ways without referring to lower level details. To assign
proper meaning to applications, we use rules to define
concepts so that the meaning of a concept becomes
context dependent and interpreted accordingly at run
time. To offer control of data to the user, we also
allow drill down and roll up type of concepts on
expression data. For example, the Affymetrix library
[14] available in R/Bioconductor can summarize the
probe set intensities to form one expression value for
each gene. Usually probe level data can be used for
quality control, RNA degradation assessments, different
probe level normalization and background correction
procedures, and flexible functions that permit the user
to convert probe level data to expression measures.
However, this function is not available for MAGE-ML
data. So if that information is of interest, queries need
to be performed over Affymetrix level data. Providing
support for one or the other can often be considered
limiting, and may motivate users to stay close to lower
level data that offers them the control they feel they
may need.

We view Curray as a sub-language of our recently
proposed language BioFlow [12] in our LifeDB database
management system for Life Sciences applications [13].
Curray provides all necessary constructs needed to han-
dle expression data in the context of biological science
while BioFlow support basic data manipulation, data
integration and representation mismatch (XML, rela-
tional, text, etc.). We divide representation and manipu-
lation of expression data into three categories in Curray
- data definition, concept definition and expression data
manipulation language. We take advantage of the fact
that almost all microarray data are read only, and hence,
no updates are expected. Consequently, views created
from base data are also read only. We now present the
proposed language Curray using several example
fragments.

Data definition language
Curray data definition language allows defining an
experiment at the raw data level as it is delivered from
LIMS systems, called limstable, and at the conceptual
level for end users, called expressiontable. The experi-
ments at the conceptual level are considered to be
“base” level or “expression” format. All other levels are
viewed relative to this base level. Therefore, the LIMS
level would be considered a drill-down, and MAGE-ML
level a roll-up from base level. Although in an earlier
section we have outlined a canonical representation of
expression objects and tables, Curray leaves open what
tables can be considered a limstable or an expressionta-
ble in terms of their structures. This is done to accom-
modate arbitrary tables into the framework in which
there may be a need for using existing tables as expres-
sions. Consequently, Curray does not reserve specific
scheme, or identifiers for key fields. But it does insist on
the table structure as shown in Figure 1. The following
example clarifies this further.
Assume that we have one raw gene expression data

set from a LIMS system, called epilepsyDataLims, gener-
ated from brain tissue samples in Agilent format. How-
ever, the expression information of the samples is

Figure 2 Mapping LIMS tables to Curray expression tables using SQL.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 4 of 12

spread over three tables, including two other tables
annotation and probeSet. The create limstable epilepsy-
DataLims statement in Figure 3(a) creates a composite
table of these three tables in which table epilepsyData-
Lims is the root table, and tables annotation and probe-
Set are children of the root table, expressed through the
required subtables annotation, probeSet clause. This
composite object view of tables holds true for Curray
tables created using limstable or expressiontable options,
although these are traditional SQL tables and can be
used in SQL statements. Notice that these definitions
induce a dependency graph and join path among the set
of tables that constitute the epilepsyDataLims. In this
case, the composite view allows access to the sub tables

as a large table formed using a natural join of all three
tables transparently to the users, and thus, users are not
required to think in terms of so many tables and their
interrelationships.
This lower level object view of experiments is cap-

tured at the conceptual level by the create expressionta-
ble epilepsyData in Figure 3(b) in a way that mimics the
structure in Figure 1. In this case, the root table is epi-
lepsyData, and the tables are of depth three as the sub-
tables have their own sub-tables. Once an expression
table or LIMS table has been defined, it can be popu-
lated in two principal ways. First, if a data set requires
conversion from an external format such as text or
XML to LIMS table format or base format, we use

Figure 3 Data definition and data manipulation statements in Curray.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 5 of 12

extract statement as shown in Figure 3(e). We use
extract to also up-convert data from a lower view to an
upper view, i.e., from agilent format to base format. The
where clause allow filtering of unwanted objects in
LIMS level data in epilepsyDataLims. The declaration
format agilent in Figure 3(a) makes it possible to appro-
priately choose a map function to transform the objects
in the LIMS table to Curray table epilepsyData, again as
a composite object. The using function clause in Figure
3(e) is optional. It allows specialized functions, and in
its absence, the system selects the default function for
the mapping (possibly the one shown in Figure 2). Since
the format for Agilent (or Affymetrix) data is standard, it
needs to be defined and the mapping functions devel-
oped only once in the database. Once defined, we can
statically create a MAGE-ML version of the Agilent
table epilepsyData as shown in statement 3(j) in a simi-
lar way. It is important to note here that extract is a for-
mat conversion statement. It can also convert data from
Curray formats (LIMS table and base format) to external
formats such as MAGE-ML in XML. Again, similar to
text data, to process data in MAGE-ML format, we will
need to convert it to one of the Curray formats.
Note that there are numerous functions for converting

Affymetrix and Agilent format to MAGE-ML format and
we could choose one based on system preference. For
the purpose of quality assurance, the output of function-
Name must match format definition in the format
clause. Since we are not aware of any function that can
create a lower level view from a higher level view, for
example from MAGE-ML to Affymetrix, we postulate
that it is not that useful to drill down dynamically. But
it is certainly possible to imagine a dynamic conversion
to a higher level view such as epilepsyData in base for-
mat from Agilent at query time as shown in statement 3
(h) in which we are using a qualifier rollup in front of a
table name to convert it to base format. The only differ-
ence is that this conversion will not be materialized.
Since dynamic drill down is not feasible in the absence
of suitable map functions, the user must query the
lower level representation that is always part of the
database, such as the epilepsyDataLims table, when
needed. However, if and when reverse map functions
become available, an equivalent drill-down option can
be specified as drill-down epilepsyDataMl to agilent
using functionName. If dynamic drill down becomes
possible, we can then define drill down to any format.
As a consequence, we can achieve platform transparency
by being able to move from one format to the other.
The definition suit above actually makes it possible to
view the collection of tables that define epilepsyData as
a single unit connected internally as a graph. These con-
nections using join path can also be established by

BioFlow’s link and combine type object aggregation and
record linkage constructs.

Data manipulation language
Data manipulation in Curray is accomplished using its
native statements for querying basic expression data and
using BioFlow for complex data processing involving
local or remote data repositories and tools. A more
detailed discussion on how BioFlow can be used may be
found in [12,15]. The basic expression functions in Cur-
ray statements follow the suggestions in [16] that advo-
cates four basic functionalities – class discovery, class
comparison, class prediction and mechanistic studies. In
general, Curray supports expression and post-expression
level analysis through compute statement, as shown in
Figure 3(f), and with the aid of create expressionview
statement, as shown in Figure 3(g). compute functions
in a way similar to SQL’s select statement, the only dif-
ference being that it accepts a composite expression
table and possibly returns an expression table (to the
extent the compute list retains the expression table
structure). If insufficient number of attributes is retained
in the compute list, it may degenerate into a relational
table as in Figure 3(f). It is possible to show that the
four types of functions Quackenbush [16] insists that a
data management system for microarrays should per-
form, can be framed using Curray and BioFlow fully
declaratively.
The statement 3(f) states that a fold change analysis

needs to be performed and all genes that have a fold
change greater than 2.0 should be returned in a brain
study experiment using the foldChange function in bio-
conductor library. The using library clause in compute
statements allow selecting analysis functions available in
popular packages. In the current version of Curray, we
have included Bioconductor/R as a library and users are
able to choose all the functions this package supports.
These functions are available in both the where and
having clauses. The second statement in 3(i) actually
uses the online database DAVID for a pathway analysis
where false discovery rate (FDR) is used as cutoff value
for the gene list in diffExpressGeneList computed using
3(f), where we show the BioFlow define function state-
ment that implements the DAVID pathway function. It
may be noted here that all these statements follow
SQL’s compositional completeness property and hence
can be composed to an arbitrary level of nesting. A
similar statement can be developed for GO term analy-
sis using DAVID without much effort.
A final note about the Curray statements is that

although Curray has specialized constructs not native in
SQL, the tables it creates are all traditional SQL tables.
So, they can be used in any SQL statements as

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 6 of 12

appropriate. The only difference is that when these
tables (limstable or expressiontable) are used in tradi-
tional SQL sentences, their Curray specific interpreta-
tions are not applicable and standard interpretations
apply. Also, before we conclude this discussion, we must
mention that any complex analysis that is not covered
by the basic Curray statements can be easily performed
using BioFlow. The most enabling feature in Curray is
in the way expression data is interpreted in the create
expressiontable and create expressionview statements,
and how they are organized behind the scene so that
users need not worry about the details. Furthermore,
the SQL-like feeling supported in Curray is interesting
in which analysis functions are blended in through the
using library option in the compute statements. In sum-
mary, Curray supports data definition and view defini-
tion through create limstable, create expressiontable,
create expressionview, and extract into statements. The
data manipulation is supported using only one new
statement called compute that works similarly to the
traditional select statement.

Comparison with R/Bioconductor
The argument for designing a declarative language such
as Curray for microarray data hinges upon the fact that
query languages such as SQL are more palatable to end
users than scripting languages such as Perl, BioPerl or
R. In such declarative querying environments, it is possi-
ble to hide significant amount of details, and users focus
on what to find, and not on how to find it. We will
demonstrate the usefulness of Curray over R, in particu-
lar, using an example on epilepsy research in our lab.
One of our epilepsy research required the develop-

ment of two channel Agilent custom microarrays from
brain samples of patients with epilepsy, and from nor-
mal people without epilepsy as control. Like many other
chip design projects, it was discovered during analysis
that some of the chips were not in good condition due
to faulty hybridization, and as such, a separate set had
to be designed and fabricated in another facility. Thus
in this experiment, it was necessary to ascertain the
goodness of the arrays by running a presence/absence

(of probes) analysis. The expectation was that the con-
trol probes should be present in all chips as should all
probes of a control gene. However, all probes of test
genes were not expected to be present in all chips,
because if they did, it would mean that those probes did
not convey any information. Hence, presence/absence
analysis classified probes as good or bad, and could be
useful for future design of custom arrays that will allow
discarding bad probes, thus making arrays more useful.
Due to the modified chip status, adjustments were made
as follows. Since red channel in the control data set
(normal brain samples) was corrupted, it was dropped
from any analysis. A gene was considered present if the
majority of the probes were present either in single or
bi-color. Under this altered condition and difference in
analysis criteria, a custom R script such as the one in
Figure 4 would be needed.
Our contention is that it requires significant skills and

knowledge of R to develop such scripts. Not only that,
doing simple tasks such as computing differential gene
expression of an experiment requires significant exper-
tise. For example, to compute the differentially
expressed genes in R for our Agilent experiments, one
will need to write the script in Figure 5, and the script
in Figure 6, if the experiment is in Affymetrix. None of
these scripts are as simple and intuitive as the query in
Figure 3(f), written in Curray. In Curray, the user need
not be aware that the experiment was in Agilent, Affy-
metrix or Illumina, for example.

Examples of complete gene expression studies
using Curray
We discuss a complete gene expression study using Cur-
ray so that the readers can have an intuitive feeling about
the usefulness and the capabilities of the language. The
first example is about checking the quality of the probes
in an experiment; and the second is about computing the
fold change of genes. Since gene expression analyses
often require other data and tool applications, most real
expression studies in Curray will require more than Cur-
ray features alone. In the examples to follow, we show
how Curray statements, in conjunction with BioFlow and

Figure 4 R script for present/absent analysis using green channel.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 7 of 12

SQL statements, help declaratively conceptualize an ana-
lysis involving gene expression. It should be understood
that in the context of gene expression and many Life
Sciences analyses, a query usually means a set of steps
that involves multiple queries in the traditional sense.

Goodness of the probes
The basic idea of the analysis is to determine the quality
of probes in an experiment. Probes in microarrays can be
divided into two broad categories – control and test. To
calculate the quality of probes, we can proceed as follows.
A control probe is of good quality if all replicates of

that probe in a chip are present. However, for a test
probe, it must be present in at least one replicate in
order to be considered good. The set of Curray expres-
sions in Figure 7 extracts the set of acceptable probes.
The view in statement (7) counts the number of times
test probes are present in a chip, and the view in state-
ment (8) counts the number of replicates of control
probes . These views are used to compute the good con-
trol probes and test probes in statements (9) and (10)
respectively.

Fold enrichment analysis
Computing fold enrichment is one of the most critical
steps in many microarray experiments. By calculating

fold change, we can cluster genes based on their
expression and relative expression between experimen-
tal conditions. The whole experiment may be divided
into three main parts: (i) compute fold change and
isolate top n genes for next step, (ii) carry out a path-
way enrichment analysis, and finally (iii) do a go term
enrichment of the top n genes. In the discussion to
follow with reference to Figure 8, we are assuming
that proper extract, create limstable and create expres-
siontable statements have been included as
appropriate.
Statement (1) in Figure 8 computes the fold change

and collects the genes that cross a threshold. State-
ment (4) calls the functions defined in statements (2)
through (3) to interact with DAVID web site which
takes as input the list of genes that has passed thresh-
old and collects enriched pathways and pathway
related genes. A similar analysis is completed in state-
ments (5) and (6) using the Panther database. State-
ment (8) calls the function defined in statement (7)
which collects all genes related to particular disease
which is “epilepsy” in the example. Statement (9) com-
putes the final list of genes that are enriched both in
Panther Pathway database and David Database (KEGG
pathways) and have correlations to target disease in
literature.

Figure 6 R script for computing differentially expressed genes in Affymetrix platform.

Figure 5 R script for computing differentially expressed genes in Agilent platform.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 8 of 12

A translational approach to implementation
The current implementation of Curray is based on a
translational approach. Figure 9 shows the functional
relationships between the various components of the sys-
tem at a high and abstract level. Since Curray contains
BioFlow specific statements, we use the transformation
function τ to translate Curray statements to either SQL

statements, BioFlow statements, or to Curray specific
procedures that neither BioFlow or an underlying SQL
engine would recognize – i.e., some implementation of
the extract statement. Similarly, at the BioFlow engine
level, many BioFlow statements cannot be implemented
directly in SQL, and hence, we require a BioFlow proces-
sing engine that is capable of complementing SQL

Figure 7 Curray script for computing the good probes.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 9 of 12

toward implementing BioFlow. Once Curray statements
are mapped to either Curray procedures, SQL or BioFlow
sentences, we transmit all BioFlow statements to BioFlow
engine for another level of translation to SQL (or Bio-
Flow procedures). The grammar for our complete set of
Curray statements and the translation algorithms (for
create expressiontable, create limstable, create expres-
sionview compute and extract) statements may be found

in Additional File 1. However, we do not discuss the
translation procedures for BioFlow statements to SQL
statements in this paper. Readers may consult BioFlow
related articles in [12,13,15,17] for more the details.

Results and discussion
Curray has been implemented as a stand alone expression
data management system front-end for SQL using the

Figure 8 Fold Enrichment Analysis in Curray.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 10 of 12

MySQL database management system. Since Curray is part
of BioFlow, it has a significant advantage over contempor-
ary expression data management systems including Bio-
conductor/R because BioFlow and Curry are both SQL like
text based query languages, built as front ends for MySQL,
and BioFlow is capable of supporting workflow design and
data integration over distributed network resources. Since
Curray is a prototype and believed to be one of its kind, we
did not concern ourselves too much with its execution effi-
ciency. This is because regardless of the fact that a transla-
tional approach adds slight inefficiency to the overall
implementation, it is still significantly better than the alter-
native – piecewise manual computation. When a graphical
interface for Curray is implemented, and users are able to
develop applications using this interface, the slight ineffi-
ciency due to translations will become inconspicuous.

Conclusions
We have demonstrated that declarative querying of gene
expression data at any level is possible and doing so yields
significant benefits in terms of time and ease of application
of development. Most importantly, most gene expression,
post-expression analyses require integration with online
analysis tools and databases in a computational pipeline.
Most contemporary systems support such features very lit-
tle, if at all. Curray, on the other hand can support all in
one single platform. The developments proposed in this
article allow users to view their expression data from a
conceptual standpoint – experiments, probes, expressions,
mapping, etc. at multiple levels of representations and
independent of the underlying chip technologies. Curray
also allows transparent roll-up and drill-down along the
representation hierarchies from raw data to standards such
as MIAME and MAGE-ML using linguistic constructs.

Additional material

Additional file 1: Curray grammar and translation algorithms

Acknowledgements
This research was supported in part by National Science Foundation grant
IIS 0612203 and National Institute of Health grant NIDA 1R03DA026021-01.
The authors would also like to acknowledge the insightful discussions with
Leonard Lipovich and Fabien Dachet at the Center for Molecular Medicine
and Genetics, Wayne State University, during the development of Curray
that shaped some of its features.
This article has been published as part of BMC Proceedings Volume 5
Supplement 2, 2011: Proceedings of the 6th International Symposium on
Bioinformatics Research and Applications (ISBRA’10). The full contents of the
supplement are available online at http://www.biomedcentral.com/1753-
6561/5?issue=S2.

Author contributions
Hasan Jamil designed the data model and language features of Curray while
Aminul Islam designed the Curray system architecture and implemented the
system.

Competing interests
The authors declare no conflict of interests.

Published: 28 April 2011

References
1. Christersson JV, Nordborg N, Svensson M, Hakkinen J: BASE - 2nd

generation software for microarray data management and analysis. BMC
Bioinformatics 2009, 10:330+.

2. Gattiker A, Hermida L, Liechti R, Xenarios I, Collin O, Rougemont J,
Primig M: MIMAS 3.0 is a Multiomics Information Management and
Annotation System. BMC bioinformatics 2009, 10:151+.

3. Zhu Y, Zhu Y, Xu W: EzArray: a web-based highly automated Affymetrix
expression array data management and analysis system. BMC
Bioinformatics 2008, 9(46).

4. Fang H, Harris SC, Su Z, Chen M, Qian F, Shi L, Perkins R, Tong W:
ArrayTrack: an FDA and public genomic tool. Methods in molecular
biology (Clifton, N.J.) 2009, 563:379-398.

5. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G,
Tierney L, Yang JY, Zhang J: Bioconductor: open software development
for computational biology and bioinformatics. Genome biology 2004,
5(10).

6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set
enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of
Sciences of the United States of America 2005, 102(43):15545-15550.

7. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C,
Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P,
Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A,
Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M:

Figure 9 Translation procedure for Curray scripts to BioFlow statements.

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1753-6561-5-S2-S10-S1.pdf
http://www.biomedcentral.com/1753-6561/5?issue=S2
http://www.biomedcentral.com/1753-6561/5?issue=S2
http://www.ncbi.nlm.nih.gov/pubmed/19822003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18218103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18218103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19597796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract

Minimum information about a microarray experiment (MIAME)—
[mdash]—toward standards for microarray data. Nat Genet 2001,
29(4):365-371.

8. Kauffmann A, Rayner TF, Parkinson H, Kapushesky M, Lukk M, Brazma A,
Huber W: Importing ArrayExpress datasets into R/Bioconductor.
Bioinformatics 2009, 25(16):2092-2094.

9. Durinck S, Allemeersch J, Carey VJ, Moreau Y, De Moor BD: Importing
MAGE-ML format microarray data into BioConductor. Bioinformatics
20(18):3641+.

10. Expresso Home Page. [https://bioinformatics.cs.vt.edu/~expresso/index.
php].

11. Stratowa C: Distributed Storage and Analysis of Microarray Data in the
Terabyte Range: An Alternative to Bioconductor. Proceedings of the 3rd
International Workshop on Distributed Statistical Computing 2003.

12. Jamil H, Islam A: The Power of Declarative Languages: A Comparative
Exposition of Scientific Workflow Design using BioFlow and Taverna. 3rd
IEEE International Workshop on Scientific Workflows Los Angeles, CA: IEEE
Computer Society; 2009, 322-329.

13. Bhattacharjee A, Islam A, Amin MS, Hossain S, Hosain S, Jamil H, Lipovich L:
On-the-fly Integration and ad hoc Querying of Life Sciences Databases
using LifeDB. 20th International Conference on Database and Expert Systems
Applications Linz, Austria; 2009, 561-575.

14. Affy package. [http://www.bioconductor.org/ packages/ 2.0/ bioc/ html/
affy.html].

15. Jamil H, Islam A, Hossain S: A Declarative Language and Toolkit for
Scientific Workflow Implementation and Execution. International Journal
of Business Process Integration and Management 2010, 5:3-17, [IEEE SCC/SWF
2009 Special Issue on Scientific Workflows].

16. Quackenbush J: Computational approaches to analysis of DNA
microarray data. Yearbook of Medical Informatics 2006, 1:91-103.

17. Jamil H, El-Hajj-Diab B: BioFlow: A Web-based Declarative Workflow
Language for Life Sciences. 2nd IEEE Workshop on Scientific Workflows
Honolulu, HI: IEEE Computer Society; 2008, 453-460.

doi:10.1186/1753-6561-5-S2-S10
Cite this article as: Jamil and Islam: Managing and querying gene
expression data using Curray. BMC Proceedings 2011 5(Suppl 2):S10.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Jamil and Islam BMC Proceedings 2011, 5(Suppl 2):S10
http://www.biomedcentral.com/1753-6561/5/S2/S10

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/11726920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11726920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15256416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15256416?dopt=Abstract
https://bioinformatics.cs.vt.edu/~expresso/index.php
https://bioinformatics.cs.vt.edu/~expresso/index.php
http://www.bioconductor.org/ packages/ 2.0/ bioc/ html/ affy.html
http://www.bioconductor.org/ packages/ 2.0/ bioc/ html/ affy.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Need for a declarative language for expression data

	A canonical model for microarray data
	Mapping heterogenous experiments to canonical model

	Recipe for Curray
	Data definition language
	Data manipulation language

	Comparison with R/Bioconductor
	Examples of complete gene expression studies using Curray
	Goodness of the probes
	Fold enrichment analysis

	A translational approach to implementation
	Results and discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

