

ORAL PRESENTATION

Open Access

Insoluble Ni compound-induced gene amplification/gene silencing causes over-expression of microtubules/microfilaments, cell shape changes, and de-regulation of global gene expression/Ca+² gradients, inducing morphological/ neoplastic transformation of 10T1/2 mouse embryo cells

Joseph Landolph^{1,2,3*}, Aruni DeSilva^{1,3}, Duy Mai^{1,2}, Jim K Lin^{1,2}, Jimmy Zheng¹

From 16th International Charles Heidelberger Symposium on Cancer Research Coimbra, Portugal. 26–28 September 2010

Inhalation of Ni-containing sulfidic ore dusts and smoking cigarettes in Ni refineries causes human respiratory cancer. Inhalation of Ni₃S₂ or green NiO induces respiratory cancer in rats. Ni₃S₂ and green NiO were phagocytosed into and induced morphological/A. I./neoplastic transformation in 10T1/2 mouse embryo cells. mRNA differential display showed that 130 genes were differentially expressed between non-transformed and two MCA/ four Ni-transformed, 10T1/2 cell lines. Ni/MCAtransformed cell lines displayed a) ect-2 gene amplification/higher levels of ect-2 mRNA/protein; b) increased levels of calnexin mRNA/protein; and c) absence of DRIP80 and β-centaurin-2 mRNAs. We hypothesized amplification of the ect-2 gene led to higher steady-state levels of rhoA-GTP, inducing higher steady-state levels of microtubules (MTs) in Ni/-MCA transformed cell lines. We stained non-transformed/transformed 10T- 1/2 cell lines with fluorescent antibody to α -tubulin/ β -tubulin, to stain MTs. MTs were distributed homogeneously in long, thin fibers in non-transformed 10T1/2 cells, but present at higher levels/-aggregated in some areas/missing in other areas of transformed cells, confirming hypothesis #1. We next hypothesized transcriptional silencing of the β-centaurin-2 gene led to increased steady-state levels of microfilaments (MFs) and altered their intracellular distribution, in Ni/MCA transformed cell lines. We stained cells with fluorescent phalloidin, a fungal toxin that binds to MFs, and demonstrated MFs were distributed homogeneously in long, thin fibers in non-transformed 10T1/2 cells, but present at higher levels/aggregated, in some areas and missing in other areas of transformed cells, confirming hypothesis #2. Over-expression/clumping of MFs/MTs rounded transformed cells, altering their contact with extra-cellular matrix. Third, we hypothesized that silencing the DRIP80 gene led to alterations in Ca⁺² ion gradients in transformed cell lines, and confirmed this by staining cells with the Ca⁺² fluorophore, FLUO 3AM. This would alter activities of Ca⁺²-dependent enzymes in transformed cell lines, contributing to aberrant physiologies. Ni⁺² ion therefore induced ect-2 gene amplification/over-expression and caused silencing of the β-centaurin-2 and DRIP80 genes, leading to over-expression of MTs/ MFs, respectively, hence cell shape changes and altered gene expression, and to aberrant Ca⁺² ion gradients, which would cause changes in activities of Ca⁺²-dependent enzymes. Changes in MTs, MFs, and Ca⁺² ion gradients would de-regulate expression of 130 genes /alter Ca⁺²-dependent enzyme activities, contributing to induction of cell transformation.

Full list of author information is available at the end of the article

^{*} Correspondence: landolph@usc.edu

¹Cancer Research Laboratory, USC Cancer Center, University of Southern California, Los Angeles, CA, USA

Acknowledgements

This research was supported by grants to JRL from: R01 ES 03341 (PI, JRL), Core Grant 5P30 CA014089 to USC Cancer Center (NIH), funds from M. S. Prog. in Micro/Imm. at USC, grants from USC Provost's Office for undergraduate research.

Author details

¹Cancer Research Laboratory, USC Cancer Center, University of Southern California, Los Angeles, CA, USA. ²Department. of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. ³Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Published: 24 September 2010

doi:

Cite this article as: Landolph *et al.*: Insoluble Ni compound-induced gene amplification/gene silencing causes over-expression of microtubules/microfilaments, cell shape changes, and de-regulation of global gene expression/Ca+² gradients, inducing morphological/neoplastic transformation of 10T1/2 mouse embryo cells. *BMC Proceedings* 2010 4(Suppl 2):O6.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

