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Abstract

Metabolic syndrome, by definition, is the manifestation of multiple, correlated metabolic
impairments. It is known to have both strong environmental and genetic contributions. However,
isolating genetic variants predisposing to such a complex trait has limitations. Using pedigree data,
when available, may well lead to increased ability to detect variants associated with such complex
traits. The ability to incorporate multiple correlated traits into a joint analysis may also allow
increased detection of associated genes. Therefore, to demonstrate the utility of both univariate
and multivariate family-based association analysis and to identify possible genetic variants associated
with metabolic syndrome, we performed a scan of the Affymetrix 50 k Human Gene Panel data
using 1) each of the traits comprising metabolic syndrome: triglycerides, high-density lipoprotein,
systolic blood pressure, diastolic blood pressure, blood glucose, and body mass index, and 2) a
composite trait including all of the above, jointly. Two single-nucleotide polymorphisms within the
cholesterol ester transfer protein (CETP) gene remained significant even after correcting for
multiple testing in both the univariate (p < 5 × 10-7) and multivariate (p < 5 × 10-9) association
analysis. Three genes met significance for multiple traits after correction for multiple testing in the
univariate analysis, while five genes remained significant in the multivariate association. We
conclude that while both univariate and multivariate family-based association analysis can identify
genes of interest, our multivariate approach is less affected by multiple testing correction and yields
more significant results.
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Background
Although various organizations have used different
criteria to define metabolic syndrome (MetSyn), it is
generally agreed that MetSyn consists of a combination
of impaired glucose metabolism, insulin resistance,
hypertension, obesity, and dyslipidemia that increases
the risk of poor cardiovascular outcomes [1]. Research,
whether through heritability or association studies,
suggests there is an important genetic underpinning to
this disease [2]. Moreover, linkage studies have shown
that analyzing the components of MetSyn as a multi-
variate outcome can give stronger evidence for regions
harboring disease-susceptibility loci than analyses of
separate univariate phenotypes [3-9].

Here we aim to establish the relationship between
biomarker data for the components of MetSyn based
on the World Health Organization (WHO) definition
and single-nucleotide polymorphisms (SNPs) within the
50 k SNP candidate gene panel of the offspring cohort of
the Framingham Heart Study (FHS), using full-pedigree
information. We will compare the results of our family-
based association analyses of MetSyn as a multivariate
phenotype to results that consider each component of
MetSyn as a univariate trait while accounting for the
familial clustering of data in both analysis methods.

Methods
Pedigree and phenotype data
Before and during this study, all authors signed and
complied with the Data Use Agreement for the Framing-
ham Heart Study data and the Case Western Reserve
University IRB. Due to large amounts of missing data for
the variables of interest in the FHS original cohort, only
phenotype data for individuals from the offspring cohort
were included in the analyses.

However, the family structure from all cohorts was
utilized in the analyses. Analyses were restricted to
measurements reported from the seventh visit of the
offspring cohort because more variability in the quanti-
tative traits was expected in the older study participants.
Our study was restricted to non-smokers to remove
confounding by smoking status. We further trimmed our
data set to reduce computational complexity by remov-
ing four pedigrees with more than 200 members each,
resulting in 770 individuals and 1052 sibling pairs
within 334 pedigrees.

Because the data set given did not include fasting insulin
levels or waist circumference, we used the WHO 1999
definition of MetSyn to choose the variables to include
in our multivariate trait, including: triglycerides (TG),
high-density lipoprotein (HDL), systolic blood pressure

(SBP), diastolic blood pressure (DBP), blood glucose
(BG), and body mass index (BMI) as defined by weight
in kilograms divided by height in meters squared [10].

Preliminary modeling identified age, sex, and the
interaction of age by sex as covariates to adjust for
before the association analysis. To account for the blood
pressure lowering effects of medication, a constant of 10
was added to SBP and a constant of five was added to
DBP for those individuals who reported using anti-
hypertensive medication [11]. Due to the skewness of
the variables, TG, HDL, SBP, DBP, BG, and BMI were
each natural log-transformed before analysis.

Marker data
Because MetSyn has been extensively studied and many
candidate genes named, we chose to analyze the 50 k
candidate gene SNP panel. Prior to association analysis,
mendelian inconsistencies were identified in the data
using MARKERINFO (S.A.G.E. v5.4.2) and the genotypes
of all individuals in a family with an inconsistency were
set to missing for each given marker.

Association analysis
We used the following regression model as implemented
in ASSOC, a program in the S.A.G.E. software suite:

h y h a y c y c y c zi i i n ni i i( ) ( ... ) ,= + + + + + +1 1 2 2 δ η

where for any individual i, with trait y1, cji is any one of n
individual specific covariates, hi is a random effect
comprising, in our study, the sibling and individual
specific errors, zi is a genotype indicator for the allele A at
a diallelic locus with alleles A and B,
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for genotype AB

for genotype AA

,

and the regression coefficients yj and δ are median
unbiased on the original scale of measurement. We
simultaneously estimate the effect of allele A, covariates,
and the residual variance components. The likelihood is
maximized numerically over all parameters, and stan-
dard errors determined. p-Values for the regression
coefficients and the variance components, based on the
likelihood ratio and Wald test, were calculated. Any
SNPs for which these two tests did not agree were
removed from the results reported.

Multivariate association analysis of quantitative traits
was conducted using the S.A.G.E. program RELPAL,
which implements the multivariate Haseman-Elston
regression technique as a two-stage association and
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linkage analysis [12,13]. Because we were interested only
in association, we performed the first-level regression
only. We constructed a multivariate model using a vector
of trait values, yk, for the kth family. After adjusting for
individual covariates, the expected value of ykyk

T is the
variance-covariance matrix of the traits for family k,
defined as:

ΩΩ ΦΦ= ⊗ + ⊗P E Ik k ,

where ⊗ denotes a Kronecker product, P is the additive
polygenic variance covariance matrix, F represents the
matrix of kinship coefficients, E is the environmental
variance covariance matrix, and I is an identity matrix
incorporating random error for each individual. The two-
stage approach proposed by Wang and Elston incorpo-
rates both identity-by-decent (IBD) sharing and a matrix
due to the additive effect of a quantitative trait locus
(QTL). However, limiting the analysis to stage 1 of
RELPAL by ignoring the linkage component provides a
virtually identical multivariate extension to ASSOC [13].
This association test, which considers all traits jointly,
results in a score test for the variance-covariance
component under constrained parameterization. The
test statistic is a one-sided version of the classical score
test [14]. An asymptotic p-value is obtained using a
computational approach (see S.A.G.E. user documenta-
tion) and results in a chi-square test of fixed effects on
the trait mean with degrees of freedom equal to the
number of variance-covariance components in the test
(in our case, because we only calculate the score test, it
is one).

Because the purpose of our paper is to compare these
methods, we chose to report results from both analyses
for possible thresholds rather than only those for a
specific threshold. For the univariate analysis, we began
by assuming the SNPs within a given gene had a linkage
disequilibrium (LD) measure of r2 = 0.8 (and therefore
only 20% are independent) on average and adjusted for
analyzing six traits, resulting in a significance threshold
of p < 8 × 10-6(0.05/[(50,000*0.2)*6]). We report results
significant at this threshold as well as one order of
magnitude less significant and 0.001. Similarly, for the
multivariate analyses, we report results significant at

p < 5 × 10-6(0.05/[(50,000*0.2)]), p < 5 × 10-5 and
0.001. Note that because the multivariate approach
considers all traits simultaneously, we use a less stringent
threshold.

Results
Univariate association
Only one SNP, located in the TCP11L1 gene, which
codes for a T-complex protein, met the criteria of p < 8 ×
10-6 for more than one of the univariate traits of interest.
Relaxing the criteria for significance by an order of
magnitude resulted in two additional significant SNPs:
one in the GRID1 (glutamate receptor) gene, expressed
in the central nervous system, and one in the STAC (src
homology 3 and cysteine-rich domain) gene, involved in
neural-specific signal transduction (Table 1). GRID1
showed association with both BMI and HDL and STAC
with both SBP and DBP. If we relax our criteria further to
p < 0.001, there were 50 effects shared across traits in 27
genes, on 16 chromosomes (results not shown).

Multivariate association
We found two SNPs significant at p < 5 × 10-6 through
multivariate analysis (Table 2). The most striking of
these results is for cholesterol ester transfer protein
(CETP) on chromosome 16 (p < 1 × 10-10), which has
been associated in multiple studies with HDL. Interest-
ingly, while the univariate analysis of HDL was also
highly significant (p = 7 × 10-7), no other univariate traits
met even a loose definition of association at these SNPs.
This suggests that the additional significance attained in
the multivariate analysis is due to a cumulative effect of
multiple traits when analyzed in concert. If we relax our
criteria for significance to 5 × 10-5, a SNP within the
peripheral myelin protein gene (PMP22), which is
expressed in the peripheral nervous system, emerges as
significant (Table 2). Again, relaxing the threshold for
significance to 0.001 results in over 50 additional effects,
only about one-fourth of which overlap with the
univariate results. Of these effects, all were more
significant than the univariate analysis of the same SNP.

Discussion
As mentioned above, the most striking result found in
these analyses was at CETP, a gene known to play a role

Table 1: Genes significant in the univariate analysis for more than one traita

p-value

Chromosome SNP Gene Name BG TG HDL SBP DBP BMI

3 RS6797696 STAC 0.96 0.34 0.95 3.41 × 10-6 2.71 × 10-5 0.32
11 RS3168277 TCP11L1 2.26 × 10-10 0.068 0.87 0.50 0.03 0.39
11 RS2273553 TCP11L1 0.22 0.14 1.8 × 10-4 0.76 0.79 0.27

aNone of the SNPs were significant in the multivariate analysis (p = 0.001).
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in maintaining cholesterol homeostasis (and likely
arthrosclerosis), but found to have a marked gain in
significance when incorporating all components of
MetSyn into the analysis. This may be due to pleiotropy
but with effects modest enough for other traits that are
not detectable in a univariate analysis. It may also be due
to the fact that incorporating the other components of
MetSyn into the analysis yields a trait that is more
reflective of the biological phenomenon affected by this
gene than the simple clinical measure HDL. Other results
also suggest that while univariate analysis may indeed be
effective in isolating genetic effects for complex traits like
MetSyn, incorporating other components of such a
syndrome can allow a prespecified threshold of sig-
nificance to be met even if accounting only for the
performance of fewer tests. Other examples of possible
pleiotropy are shown in our analysis, but are not as
compelling, both because the gain in significance is not
as striking and the genes themselves are not such striking
candidates. One such example is LOC65358, a locus of
unknown function with a multivariate p-value of 0.0004
and univariate p-values for BG and DBP of 0.002 and
0.01, respectively. We do note, however, one instance in
which the univariate result was more significant than the
multivariate: C9orf93. This is an open reading frame on
chromosome 9 and the univariate analysis of SBP and
DBP in this region yielded p-values of 0.0001 and
0.00001, respectively, but the multivariate analysis
yielded a p-value of 0.009. Certainly, after considering
the increased number of univariate tests done, the
difference in the level of significance is not marked.
However, this does illustrate one case in which a gene
may not be pleiotropic across the components of MetSyn
or offer a more biologically relevant trait.

Conclusion
The purpose of this study was to illustrate, in the context
of family-based association analysis, the benefit of
simultaneously considering the highly correlated traits
that comprise MetSyn. We demonstrate that for multiple
genes, one of which is known to be associated with
cholesterol homeostasis, significance can be greatly
increased when the other components of MetSyn are
simultaneously considered. In this we find the benefits
of multivariate analysis, because it can serve as a

mechanism by which to control for multiple compar-
isons, better define a trait of interest, and aid in the
detection of pleiotropic effects.
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