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Abstract

The selective genotyping approach in quantitative genetics means genotyping only individuals with
extreme phenotypes. This approach is considered an efficient way to perform gene mapping, and
can be applied in both linkage and association studies. Selective genotyping in association mapping
of quantitative trait loci was proposed to increase the power of detecting rare alleles of large effect.
However, using this approach, only common variants have been detected. Studies on selective
genotyping have been limited to single-locus scenarios. In this study we aim to investigate the
power of selective genotyping in a genome-wide association study scenario, and we specifically
study the impact of minor allele frequency of variants on the power of this approach. We use the
Genetic Analysis Workshop 16 rheumatoid arthritis whole-genome data from the North American
Rheumatoid Arthritis Consortium. Two quantitative traits, anti-cyclic citrullinated peptide and
rheumatoid factor immunoglobulin M, and one binary trait, rheumatoid arthritis affection status,
are used in the analysis. The power of selective genotyping is explored as a function of three
parameters: sampling proportion, minor allele frequency of single-nucleotide polymorphism, and
test level. The results show that the selective genotyping approach is more efficient in detecting
common variants than detecting rare variants, and it is efficient only when the level of declaring
significance is not stringent. In summary, the selective genotyping approach is most suitable for
detecting common variants in candidate gene-based studies.

Background
The extreme sampling strategy in quantitative genetics
is termed selective genotyping [1], involving phenotyp-
ing a large population of individuals, but genotyping
only those individuals whose phenotypes deviate

substantially from the mean. This approach was first
introduced in a linkage context and was readily
adopted in association analysis by treating the upper
and lower subpopulations as case and control groups,
respectively.
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This selective genotyping approach was shown to be
efficient in association mapping of quantitative trait loci
(QTLs) in a statistical framework [2,3]. Since then, there
have been several theoretical studies proposing alter-
native test statistics [4,5] or alternative sampling
procedures [6], and extending this approach to haplo-
type analysis [7]. It is important to note that the selective
genotyping approach was initially proposed to increase
the power of detecting rare alleles with large effect at
QTLs, but all the theoretical work cited assumed an
unrealistic assumption of a large sample size even in the
subpopulation of each extreme. The selective genotyping
design has been applied to identify association between
quantitative traits and genetic markers. For example, it
was applied in studying genetic association of intelli-
gence scores [8], attention-deficit hyperactivity disorder
[9], and body mass index [10]. It is worth noting that in
all of the studies mentioned previously that had positive
results, the alleles of interest were common (minor allele
frequency, or MAF > 0.20).

Both theoretical and applied studies to date have focused
on limited number of loci in a candidate gene study
scenario, and therefore their test levels were set high.
They made no comparison between common and rare
variants in a realistic situation in terms of sample size. In
this study we investigated the empirical power of
selective genotyping using the Genetic Analysis Work-
shop 16 (GAW16) rheumatoid arthritis (RA) genome-
wide association study (GWAS) data from the North
American Rheumatoid Arthritis Consortium (NARAC).
The genome-wide data provided us an opportunity to
investigate the power at different test levels and a full
spectrum of allele frequency.

Methods
The NARAC data consists of 868 cases and 1,194
controls. The samples were genotyped using the Illumina
Infinium HumanHap550 chip, and in the current study
we focused on 531,689 single-nucleotide polymorph-
isms (SNPs) across the autosomal genome. The data
were filtered through genotype call rate (>90% com-
pleteness) and the Hardy-Weinberg equilibrium test
(p-value > 0.001), and 522,587 SNPs were retained.
Note that we did not filter the data through a MAF
criterion because the MAF was a primary variable we
were investigating. To control for population stratifica-
tion, we calculated the first two principal components,
denoted PC1 and PC2, of 1,344 ancestry-informative
SNPs [11] and adjusted for them together with sex in the
subsequent association analysis. Because all individuals
were genotyped, we chose a proportion of the whole
sample to mimic the selective genotyping procedure.
Given a quantitative trait, the upper Nth, N Œ {10, 20,

30, 40, 50, 60, 70, 80, 90, 100}, percentiles of cases, and,
correspondingly, a random N percent of controls were
selected as a study dataset, i.e., there were 10 datasets
generated in total. All subjects were included when N =
100. A total of three RA-related traits, including a binary
variable of RA affection status and two quantitative
phenotypes (anti-cyclic citrullinated peptide, or anti-
CCP and immunoglobulin M, or IgM) measured only in
cases were used in the analyses.

The statistical testing procedure included three steps.
First, we tested association between affection status and
genotype using both cases and controls by a logistic
regression model, which yielded a statistic T1. Second,
we tested association between a quantitative trait and
genotype in the selected cases by a linear regression
model, which yielded a statistic T2. Because the
distribution of a quantitative trait in the selected cases
might not be normally distributed, the Box-Cox power
transformation [12] was always performed in the linear
regression. Covariates PC1, PC2, and sex were adjusted
in both tests. Third, because T1 and T2 were independent
under the null hypothesis of no association between the
traits and genotype, we employed the Fisher’s method
of combining p-values [13] to form a statistic
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p-value corresponding to the test statistic Ti. We
concentrated on results based on T3 in the subsequent
analysis because it was shown to be more powerful than
the other two [2].

To investigate the empirical power of selective genotyp-
ing in GWAS, we only focused on SNPs that attained a
p-value < 0.05 under control of the false-discovery rate
(FDR) [14] when using the whole sample. Setting the
results using the whole sample as the gold standard, we
defined relative power as, at a certain test level a, the
total number of significant SNPs using a subset of data
(N < 100) divided by the total number of significant
SNPs using the whole data (N = 100). We studied the
relative power as a function of three sets of parameters:
the sampling proportion N%, N Œ {10, 20, 30, 40, 50,
60, 70, 80, 90, 100}, the test level a = 5.0 × 100, O Œ {-2,
-3, -4, -5, -6, -7, -8}, and the SNP MAF stratified by p,
p Œ {0.05, 0.10, 0.20, 0.30, 0.40}. All analyses were
performed using the software PLINK [15] and R [16].

Results
We first performed a genome scan using the whole
sample, and were able to detect loci confirmed to be
associated with RA such as the major histocompatibility
complex on chromosome 6, PTPN22 on chromosome 1,
and TRAF1-C5 on chromosome 9 (data not shown),
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which proved the validity of the current method. To
attain a p-value < 0.05 under FDR control, the nominal
p-values for anti-CCP and IgM were 2.35 × 10-6 and
2.34 × 10-6, respectively. There were 336 SNPs for anti-
CCP and 337 SNPs for IgM that met these criteria. Their
distributions across chromosomes and allele frequency
categories are summarized in Tables 1 and 2. There were
no SNPs with a MAF < 0.01 that met the criteria, and
therefore the lowest threshold of MAF to stratify SNPs
was 0.05.

The power of selective genotyping strategy depended on
the test levels. This approach was efficient only when the
level of declaring significance was not stringent. To
achieve a relative power greater than 0.8, less than 30%
of the sample needed to be genotyped when the test level
was equal to or greater than 5 × 10-3; however, more
than 50% of the sample needed to be genotyped at the
test level of 5 × 10-5; when the test level was equal to or
less than 5 × 10-6, the power decreased linearly with the
sample size (Figure 1). Stratifying each line in Figure 1
by the MAF, we found the efficiency of selective
genotyping increased as the MAF increased regardless
of test levels (Figure 2). In other words, this approach

was most efficient in detecting common variants. We
observed similar results for both traits, and only
presented those for anti-CCP.

Discussion
Selecting individuals with extreme phenotypes increases
the narrow sense of heritability of the trait in the sample
at the cost of decreasing sample size. Therefore, there is a
trade-off between these two factors to achieve a certain
level of statistical power. This approach is more efficient
in detecting common variants than detecting rare
variants because the effective sample size (the number
of variants in a sample) decreases more rapidly for rare
variants as we decrease the sampling proportion.

Selective genotyping is commonly practiced by genotyp-
ing individuals with extreme phenotypes at both upper
and lower extremes; however, in the current study we
only selected those at the upper extremes in cases and
then made random selection in controls. This study
design was based on the trait characteristics, not
constraints of the data available. Both anti-CCP and
IgM are usually present only in cases, i.e., both
quantitative traits are zero in unaffected persons. There-
fore, the study population approximates a selected
sample plus a random sample from the general popula-
tion, similar to the design proposed by Slatkin [2].

Conclusion
The selective genotyping approach is more efficient in
detecting common variants than detecting rare variants
even though it was initially proposed to detect the latter
[2]. This approach is efficient only when the level of
declaring significance is not stringent; therefore, it
should not be employed in a GWAS, though it can be
used in a replication study to confirm findings of the
GWAS. In summary, the selective genotyping approach is
most suitable for detecting common variants in candi-
date gene-based studies.

Table 1: Genomic distribution of SNPs attaining a p-value < 0.05
under control of the false discovery rate using the whole sample

Chromosome anti-CCP IgM

1 2 3
2 1 0
3 3 1
5 3 2
6 313 318
9 7 7
12 1 0
14 0 1
15 1 0
16 3 3
17 2 1
18 0 1

Total 336 337

Table 2: Allele frequency distribution of SNPs attaining a p-value <
0.05 under control of the false discovery rate using the whole
sample

MAF anti-CCP IgM

0.40 ~ 0.50 67 70
0.30 ~ 0.40 79 78
0.20 ~ 0.30 51 52
0.10 ~ 0.20 101 100
0.05 ~ 0.10 35 33
< 0.05 3 4

Total 336 337

Figure 1
Relative power of selective genotyping at different
test levels for trait anti-CCP.
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List of abbreviations used
anti-CCP: Anti-cyclic citrullinated peptide (anti-CCP);
FDR: False-discovery rate; GAW16: Genetic Analysis
Workshop 16; GWAS: Genome-wide association study;

IgM: Immunoglobulin M; MAF: Minor allele frequency;
NARAC: North American Rheumatoid Arthritis Consor-
tium; QTLs: Quantitative trait loci; RA: Rheumatoid
arthritis; SNP: Single-nucleotide polymorphism.

Figure 2
Relative power of selective genotyping at different test levels stratified by the minor allele frequency for trait
anti-CCP.

BMC Proceedings 2009, 3(Suppl 7):S23 http://www.biomedcentral.com/1753-6561/3/S7/S23

Page 4 of 5
(page number not for citation purposes)



Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
CX conceived of the study, participated in data analysis,
and drafted the manuscript. GX participated in study
design, carried out data analysis, and helped to draft the
manuscript. Both authors read and approved the final
manuscript.

Acknowledgements
This project is supported by NIH/NCRR grant UL1 RR024982 Pilot Award
to CX. The Genetic Analysis Workshops are supported by NIH grant R01
GM031575 from the National Institute of General Medical Sciences.

This article has been published as part of BMC Proceedings Volume 3
Supplement 7, 2009: Genetic Analysis Workshop 16. The full contents of
the supplement are available online at http://www.biomedcentral.com/
1753-6561/3?issue=S7.

References
1. Lander ES and Botstein D: Mapping mendelian factors under-

lying quantitative traits using RFLP linkage maps. Genetics
1989, 121:185–199.

2. Slatkin M: Disequilibrium mapping of a quantitative-trait
locus in an expanding population. Am J Hum Genet 1999,
64:1764–1772.

3. Van Gestel S, Houwing-Duistermaat JJ, Adolfsson R, van Duijn CM
and Van Broeckhoven C: Power of selective genotyping in
genetic association analyses of quantitative traits. Behav Genet
2000, 30:141–146.

4. Wallace C, Chapman JM and Clayton DG: Improved power
offered by a score test for linkage disequilibrium mapping of
quantitative-trait loci by selective genotyping. Am J Hum Genet
2006, 78:498–504.

5. Huang BE and Lin DY: Efficient association mapping of
quantitative trait loci with selective genotyping. Am J Hum
Genet 2007, 80:567–576.

6. Chen Z, Zheng G, Ghosh K and Li Z: Linkage disequilibrium
mapping of quantitative-trait loci by selective genotyping.
Am J Hum Genet 2005, 77:661–669.

7. Xiong M, Fan R and Jin L: Linkage disequilibrium mapping of
quantitative trait loci under truncation selection. Hum Hered
2002, 53:158–172.

8. Plomin R, McClearn GE, Smith DL, Vignetti S, Chorney MJ,
Chorney K, Venditti CP, Kasarda S, Thompson LA, Detterman DK,
Daniels J, Owen M and McGuffin P: DNA markers associated
with high versus low IQ: the IQ quantitative trait loci (QTL)
Project. Behav Genet 1994, 24:107–118.

9. Cornish KM, Manly T, Savage R, Swanson J, Morisano D, Butler N,
Grant C, Cross G, Bentley L and Hollis CP: Association of the
dopamine transporter (DAT1) 10/10-repeat genotype with
ADHD symptoms and response inhibition in a general
population sample. Mol Psychiatry 2005, 10:686–698.

10. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T,
Wichmann HE, Meitinger T, Hunter D, Hu FB, Colditz G, Hinney A,
Hebebrand J, Koberwitz K, Zhu X, Cooper R, Ardlie K, Lyon H,
Hirschhorn JN, Laird NM, Lenburg ME, Lange C and Christman MF:
A common genetic variant is associated with adult and
childhood obesity. Science 2006, 312:279–283.

11. Tian C, Plenge RM, Ransom M, Lee A, Villoslada P, Selmi C,
Klareskog L, Pulver AE, Qi L, Gregersen PK and Seldin MF: Analysis
and application of European genetic substructure using
300 k SNP information. PLoS Genet 2008, 4:e4.

12. Box G and Cox D: An analysis of transformations (with
discussions). J R Stat Soc Ser B 1964, 26:211–254.

13. Fisher RA: Combining independent tests of significance. Am
Statist 1948, 2:30.

14. Benjamini Y and Yekutieli D: The control of the false discovery
rate in multiple testing under dependency. Ann Stat 2001,
29:1165–1188.

15. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA,
Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ and Sham PC:
PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am J Hum Genet 2007,
81:559–575.

16. R Development Core Team: R: A language and environment for
statistical computing. Vienna, R Foundation for Statistical Computing
2008 http://www.R-project.org.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Proceedings 2009, 3(Suppl 7):S23 http://www.biomedcentral.com/1753-6561/3/S7/S23

Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.ncbi.nlm.nih.gov/pubmed/2563713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2563713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10330364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10330364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10979604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10979604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17273979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17273979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16175512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16175512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12145552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12145552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8024528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8024528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8024528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15809660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15809660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15809660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15809660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16614226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16614226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17701901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17701901?dopt=Abstract
http://www.R-project.org
http://www.R-project.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Discussion
	Conclusion
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

