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Abstract

Genetic association of population-based quantitative trait data has traditionally been analyzed using
analysis of variance (ANOVA). However, violations of certain statistical assumptions may lead to
false-positive association results. In this study, we have explored model-free alternatives to
ANOVA using correlations between allele frequencies in the different quantile intervals of the
quantitative trait and the quantile values. We performed genome-wide association scans on anti-
cyclic citrullinated peptide and rheumatoid factor-immunoglobulin M, two quantitative traits
correlated with rheumatoid arthritis, using the data provided in Genetic Analysis Workshop 16.
Both the quantitative traits exhibited significant evidence of association on Chromosome 6,
although not in the human leukocyte antigen region which is known to harbor a major gene
predisposing to rheumatoid arthritis. We found that while a majority of the significant findings using
the asymptotic thresholds of ANOVA was not validated using permutations, a relatively higher
proportion of the significant findings using the asymptotic cut-offs of the correlation statistic were
validated using permutations.

Background
Complex genetic traits are usually characterized by
correlated quantitative precursors. Because quantitative
traits carry more information on within-genotype variation
compared to binary (affected/unaffected) traits, it has been
argued that analyzing quantitative endophenotypes may be
a more powerful strategy than analyzing clinical end-points
for identifying genes controlling a complex trait. While

some family-based methods of association have been
developed for quantitative traits [1-3], population-based
quantitative trait data have usually been analyzed using
classical analysis of variance (ANOVA) methods. However,
ANOVA is valid in a strict statistical sense only under the
assumption of normality of the variable of interest and
equality of variances in each underlying group. On the
other hand, the assumption of normality and equality of
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variances of the quantitative traits for the different
genotypes at a quantitative trait locus (QTL) is genetically
unrealistic, particularly if the trait is correlated with a
disease outcome [4]. Studies have shown that the ANOVA
statistic may lead to an inflated rate of false positives when
the underlying assumptions are violated [5]. Thus, it is of
interest to explore for model-free alternatives that would
circumvent this problem. In this study, we explore some
novel quantile-based statistics to test for allelic association
and perform genome-wide association scans of anti-cyclic
citrullinated peptide (anti-CCP) and rheumatoid factor
immunoglobulin M (RFUW) levels, two quantitative
phenotypes correlated with the rheumatoid arthritis (RA)
affection status in the North American Rheumatoid
Arthritis Consortium (NARAC) data provided in Genetic
Analysis Workshop (GAW) 16. The basic paradigm of the
methods is that a marker allele in linkage disequilibrium
with an allele at the QTL would have either a strictly
increasing or a strictly decreasing frequency distribution
across the range of quantitative trait values. We compare
the association results of our proposed methods with those
obtained using ANOVA.

Data description
For our analyses, we used data on anti-CCP and RFUW levels
along with genotypes at 531,689 single-nucleotide poly-
morphisms (SNPs) distributed over the 22 autosomal
chromosomes. Data on the two quantitative traits were
available only on individuals affected with RA. After
removing the individuals with missing phenotype data,
ourmethods used data on 867 individuals (640 females and
227 males) for anti-CCP and 746 individuals (548 females
and 148males) for RFUW.We found that 51,524 SNPs had a
minor allele frequency less than 0.05. Because these markers
are unlikely to be involved in disease pathogenesis under
a common-variant, common-disease (CVCD) model, they
were also removed from the association analyses.

Statistical methodology
Suppose Q1, Q2,..., Qk denote the k sample quantiles of
the quantitative trait in study with Q0 defined as the
minimum value of the trait in the data. Suppose pi
denotes the proportion of the minor allele at a particular
SNP among individuals with quantitative trait values in
the interval (Qi-1, Qi), i = 1,2,..., k. It can be shown that
the frequency of a marker allele conditioned on the value
of the quantitative trait lying in an interval (a, b) is
independent of a and b if and only if the coefficient of
linkage disequilibrium between the QTL and the marker
locus is zero. Moreover, in the presence of linkage
disequilibrium between the two loci, the frequency of
the marker allele in positive linkage disequilibrium with
the QTL allele predisposing to high values of the
quantitative trait will increase with the quantile intervals.

Thus, one can test for allelic association based on the
correlation between Qi and pi values. A test based on the
direct correlation coefficient (r) between the two vari-
ables would be equivalent to testing whether the slope
coefficient of a linear regression of pi values on Qi values
is zero or not (that is, whether there is a linear trend
(either increasing or decreasing) of pi values with
increasing values of Qi). The test statistic is √(n-2)|r|/
√(1-r2) and is distributed as t with (n-2) degrees of
freedom under the assumption of bivariate normality of
the underlying variables, although the assumption can
be relaxed for large samples. We note that this statistic is
identical to that used for testing the slope coefficient in
the linear regression mentioned above. A more robust
statistic is based on the rank correlation (R) between the
variables given by √(n-1)|R| and is asymptotically
distributed as a standard normal variate [6]. However,
it may be more appropriate not to rely on the asymptotic
distributions and use permutation principles, instead, to
determine the significance of the above tests. We
randomly permute the quantitative trait values across
the individuals keeping the SNP genotype data
unchanged. This preserves the marginal distributions of
both the quantitative traits and the genotypes, but
generates the null distribution of no association. Since
it is becoming increasingly evident that the Bonferroni
correction for multiple testing is highly over-conservative
and hence leads to an elevated rate of false negatives, we
use the false discovery rate (FDR) procedure [7] with an
overall rate of 0.05 to identify SNPs significantly
associated with the quantitative trait in study.

One of the statistical issues is the choice of an appropriate
number of quantiles. The method involves the estimation
of the minor allele frequency in each quantile interval as
well as computing the correlation between these estimated
frequencies and the quantile values. If the number of
quantiles is too large, each quantile interval will comprise
very few observations, leading to inefficient estimation of
the allele frequencies. On the other hand, if the number of
quantiles is too small, the total number of observations for
the computation of the correlation coefficient will not be
sufficiently large to make reliable inferences on association.
We suggest that each quantile interval comprise approxi-
mately 25 observations so that the variance of the
estimated allele frequency [p(1-p)/n] cannot exceed 0.01.
The minimum number of quantiles should be about 30 for
appropriate use of large sample properties of the correla-
tion coefficient.

Results
We first tested for possible deviation from Hardy-
Weinberg equilibrium (HWE) for each of the 480,165
SNPs. To attain an overall significance level of 0.05, we
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used a Bonferroni corrected p-value less than 10-7 as
evidence of departure from HWE. Those SNPs that failed
the HWE test were removed from the association
analyses. We performed three tests of association: the
first using ANOVA, the second using the direct correla-
tion coefficient, and the third using the rank correlation
coefficient for each of the two quantitative traits: anti-
CCP and RFUW levels. To determine an effective number
of independent tests for an appropriate FDR correction,
we used the software HAPLOVIEW, which identified
367,392 tag SNPs, based on a threshold of pairwise r2

greater than 0.8.

Neither of the two quantitative traits follows a normal
distribution (p-value < 0.01 using the Kolmogorov-
Smirnov statistic and validated by Q-Q plots). There was
also no sex effect in either anti-CCP levels (p = 0.109
using a two sample t-test, p = 0.118 using the Mann-
Whitney test) or RFUW levels (p = 0.7 using a two sample
t-test, p = 0.08 using the Mann-Whitney test) and hence,
no sex adjustment was necessary for the association
analyses. For the quantile-based methods, we divided
the data into 31 quantile intervals for both the
quantitative traits (for anti-CCP, 28 observations in
each of the first 30 intervals and 27 in the last interval;
for RFUW, 24 observations in each of the first 30
intervals and 26 in the last interval).

We performed our association analyses on all the 22
chromosomes using ANOVA and the two quantile-based
statistics. The most significant association findings are
presented in Table 1. Analyses on anti-CCP levels using
ANOVA provided 935 significantly associated SNPs. The
corresponding numbers from the direct correlation coeffi-
cient and rank correlation statistics were 180 and 0,
respectively. The most extreme p-value from the rank
correlation statistic was 0.0036 on chromosome 11. There
were two genomic regions where multiple SNPs exhibited
significant evidence of association: one in the 6q22 region
(124,503,495-124,568,348 bp), which contains the
NKAIN2 (sodium/potassium transporting ATPase interact-
ing 2) gene and the other in the 11q12 region (38,983,737-
39,220,545 bp) containing a psuedogene LOC100129670.
We note that another contribution from our GAW group
also found significant evidence of association in the 6p22
region with anti-CCP [8].

When we analyzed RFUW levels using ANOVA, we found
1399 significantly associated SNPs, while the direct
correlation coefficient and the rank correlation statistics
provided 178 and 15 significant SNPs, respectively. The
most extreme p-value based on the rank correlation
statistic was 0.006 on chromosome 2. However, unlike
anti-CCP, the RFUW levels did not exhibit any genomic
region with a cluster of significant SNPs.

As pointed out in the section entitled “Statistical Metho-
dology,” it was of interest to explore whether the above
association findings, obtained using asymptotic tests, can
be validated by permutation tests. We found that for anti-
CCP, only 182 of the 935 SNPs that showed significant
evidence of association using ANOVA were validated by
permutations, while for RFUW, only 297 of the 1399 SNPs
showed significant association using permutations. How-
ever, the corresponding numbers using the direct correla-
tion statistic were 47 out of 180 SNPs for anti-CCP and 99
out of 178 for RFUW. Thus, among the SNPs exhibiting
significant association using asymptotic thresholds, the
permutation tests validated a higher proportion of SNPs
for the correlation statistic compared to ANOVA. This can
be intuitively explained by the fact that the quantile-based
correlation statistic is model-free in nature and hence
relatively more robust to violations in distributional
assumptions. The rank correlation statistic did not provide
any significant evidence of association using the permuta-
tion test procedure.

None of the SNPs in the two regions that have been
implicated in RA pathogenesis, the human leukocyte
antigen (HLA) region (on 6p21) and the PTPN22 gene
(on 1p13), showed any significant evidence of associa-
tion with either of the two quantitative phenotypes at
the overall FDR of 0.05 using any of the methods.

Conclusion
The proposed quantile-based statistics are model-free
alternatives to the ANOVA approach for association
mapping of quantitative traits and circumvent the problem
of departures from normality and homoskedasticity of the
quantitative traits conditioned on the QTL genotypes.
While these methods are more robust than ANOVA, they
are expected to be less powerful when the underlying
assumptions of ANOVA are valid. In particular, the rank
correlation statistic is bounded by √(n-1), where n is the
number of observations, and hence, has limits to the
p-values when the asymptotic distribution is used. The
direct correlation coefficient statistic, which is equivalent to
the test of the slope coefficient in a linear regression, is a
more suitable alternative. However, a permutation strategy
is likely to provide more accurate p-values compared to
asymptotic distributions, especially if the number of

Table 1: Most significant association findings

Phenotype Method Chromosome SNP p-value

Anti-CCP ANOVA 1 rs1211759 6.58 × 10-23

Correlation 1 rs17123469 5.31 × 10-19

RFUW ANOVA 6 rs6456834 7.07 × 10-23

Correlation 1 rs2785665 1.03 × 10-19
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quantiles is not very large. We also note that it is not
possible to assess the relative performances of the different
methods using real data efficiently. We are carrying out
extensive simulations independently to compare the
powers of the different tests. Our preliminary simulations
based on a sample size of 500 suggest that the powers of
the correlation-based statistic and ANOVA are comparable
under a homoskedastic QTL model, but the correlation-
based method is more powerful under a heteroskedastic
model.

An intriguing result of the present study has been the
lack of evidence of significant association in the
HLA region on chromosome 6 and the PTPN22 gene
on chromosome 1 with either of the two quantitative
phenotypes. A similar phenomenon was also observed in
the analyses of these two quantitative traits in the data
provided in Genetic Analysis Workshop 15 [9]. This
raises the possibility that the biological pathway
involved in modulating the levels of anti-CCP and
RFUW may be different from that of the clinical end-
point of RA. Alternatively, the paradox can be explained
by the fact that since a clinical end-point is usually a
function of multiple quantitative precursors, the effect
size of any gene is small for individual quantitative traits
and hence require much larger sample sizes to exhibit
significant evidence of association.

Because the data on the two quantitative traits were
available only on individuals affected with RA, the
association findings should be interpreted as poly-
morphisms involved in differential elevations of anti-
CCP and RFUW levels in RA-affected individuals from
the mean normal levels of these phenotypes. There is
reduced variation in the quantitative phenotypes when
restricted only to RA cases and hence, an appropriate
design to identify polymorphisms associated with the
two quantitative phenotypes would include data on
controls in addition to the cases.
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