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Abstract

Single-locus analysis is often used to analyze genome-wide association (GWA) data, but such
analysis is subject to severe multiple comparisons adjustment. Multivariate logistic regression is
proposed to fit a multi-locus model for case-control data. However, when the sample size is much
smaller than the number of single-nucleotide polymorphisms (SNPs) or when correlation among
SNPs is high, traditional multivariate logistic regression breaks down. To accommodate the scale of
data from a GWA while controlling for collinearity and overfitting in a high dimensional predictor
space, we propose a variable selection procedure using Bayesian logistic regression. We explored a
connection between Bayesian regression with certain priors and L1 and L2 penalized logistic
regression. After analyzing large number of SNPs simultaneously in a Bayesian regression, we
selected important SNPs for further consideration. With much fewer SNPs of interest, problems of
multiple comparisons and collinearity are less severe. We conducted simulation studies to examine
probability of correctly selecting disease contributing SNPs and applied developed methods to
analyze Genetic Analysis Workshop 16 North American Rheumatoid Arthritis Consortium data.

Background
Single-locus analysis is a widely used approach to analyze
genome-wide association (GWA) data, but it may not be
adequate to capture complex pattern of disease etiology [1]
and is subject to severe multiple comparisons adjustment,
especially in a GWA, in which the typical number of
comparisons made is hundreds of thousands. Methods to
handle large number of single-nucleotide polymorphisms
(SNPs) simultaneously are in demand. Logistic regression
is a popular tool to assess association between a

dichotomous trait and SNP genotypes. To analyze multiple
SNPs simultaneously by logistic regression, one can
include all SNPs of interest as predictors. A challenge of
applying such approaches to GWA data is that the sample
size is usually much smaller than the number of SNPs.
Traditional multivariate logistic regression breaks down in
this case. Another disadvantage of such an approach is that
when the correlation between SNPs is high due to linkage
disequilibrium (LD), the estimated coefficients are highly
variable and the method performs poorly.
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To accommodate large number of SNPs from a GWA
while controlling for collinearity and overfitting in a high
dimensional predictor space, we propose a variable
selection procedure using Bayesian logistic regression. We
explored a connection between certain priors and pena-
lized logistic regression. After analysing large number of
SNPs simultaneously in a Bayesian logistic regression, we
selected important SNPs for further consideration. With
much fewer selected SNPs of interest, problems of multiple
comparisons and collinearity are less severe. We conducted
simulation studies to examine the probability of correctly
selecting disease contributing SNPs. Finally, we applied the
methods to analyze Genetic Analysis Workshop (GAW) 16
Problem 1 chromosome 9 data.

Methods
Logistic regression is commonly used to fit dichotomous
dependent variables. The general form of logistic
regression is:

log [ ( | ,..., )] ... .it P Y X X X Xp p p= = + + +1 1 0 1 1β β β (1)

Maximum likelihood is used to estimate parameters in the
model. When the number of predictors exceeds the sample
size, traditional logistic regression breaks down. In addi-
tion, when the predictors are high correlated, the max-
imum likehood estimate from Eq. (1) is of poor quality.

Gaussian prior and L2 penalty
In a Bayesian logistic regression, the coefficients bj
in Eq. (1) follows some prior distribution. There is
a connec t ion be tween the Gaus s i an p r io r
l j j j j j( | ) /( )exp( /( ))β σ πσ β σ= −1 2 22 2 and the L 2

penalized logistic regression. To be specific, if we assume
bj is independent and follows a Gaussian distribution
with mean 0 and variances sj

2, then finding the posterior
mode of b is equivalent to maximizing the log likelihood
of logistic regression with L2 penalty [2]. The prior
variance sj

2 represents the prior belief of whether bj will
be near zero. A small value of sj

2 indicates that bj is close
to zero, and a large value indicates a less informative
prior belief. Here we assume all sj

2 have a common
value s2. L2 penalized logistic regression is proposed to
deal with the problem of overfitting and collinearity for
large number of predictors [3]. It minimizes the negative
log-likelihood subject to a constraint on the L2-norm of
the coefficients, that is, to minimize

L l j

j

p
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=

∑( ) ( / ) ,β λ β2 2
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where l is the log likelihood of the data. Choosing prior
variances s2 is equivalent to choosing smoothing
parameter l. This is also the ridge regression.

Laplace prior and L1 penalty
If we assume that bj is independent and follows a
Laplace prior (l(bj|τj) = τj/2exp(-τj|bj|)) in a Bayesian
logistic regression, then finding the posterior mode of b
is equivalent to minimizing the negative log likelihood
of logistic regression with L1 penalty, which is

L l j

j

p

= − +
=

∑( ) ( / ) | |.β λ β2
1

While L2 penalized regression shrinks coefficients
towards zero, it does not favor them to be exactly zero.
In contrast, L1 penalized regression provides sparse
solutions when a large number of coefficients will be
zero. Here we assume the prior parameter τj to take the
common value τ. This is also the LASSO regression.

Selecting prior parameters
Choosing prior variance of the parameters in a Bayesian
regression, or equivalently, the regularization parameter
in a penalized regression, is important for variable
selection. A small prior variance provides more shrinkage
towards zero or favors more coefficients to be zero. A
large prior variance reflects more uncertainty of the prior
information. The prior variance was chosen by 10-fold
cross validation. The sample was split randomly into 10
parts. The model was fit on 9 out of the 10 parts and the
log likelihood function was computed using the remain-
ing one part of the data. This procedure was done for
each of the 10 parts and the average log likelihood was
calculated. The prior variance was chosen as the one that
maximizes the “cross-validated” average log likelihood.

Simulations
We performed simulation studies to examine the
effectiveness of Bayesian logistic regression as a variable
selection procedure. We simulated 100 dichotomous
predictors from a Bernoulli distribution. The probability
of the predictor being one is generated from a uniform
distribution, U(0.25, 0.45). Ten of the hundred pre-
dictors jointly determine a subject’s disease status. The
remaining 90 predictors are not used in simulating
subjects’ disease status. We simulated two settings of
sample sizes (n = 150 and n = 250) and two settings of
odds ratios. The odds ratios are simulated from a
uniform distribution, U(1.5, 2), or U(2, 2.5).

We fit Bayesian logistic regression with Gaussian and
Laplace priors using software BBRBMR [4]. BBRBMR can
fit large-scale regressions with tens of thousands of
predictors in a timely fashion. The algorithms used find
posterior mode of a logistic likelihood efficiently [4]. We
chose the prior variances by 10-fold cross validation. The
logistic regression with Gaussian prior does not do
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variable selection directly. After performing the Bayesian
analysis of all SNPs together, we selected SNPs for the
second stage analysis by ranking their estimated regres-
sion coefficients from the first stage simultaneous SNP
analysis. We simulated 30 sets of data under each of the
four combinations of sample size and odds ratio. The
effectiveness of proposed methods is evaluated by 1) the
average number of disease-contributing predictors
selected (out of the ten); and 2) how consistent each
of the ten predictors is selected. The consistency is
defined as the average percent times of each disease-
contributing variable being selected across simulation
data sets.

NARAC data analysis
All analyses were performed on the GAW16 Problem 1
North American Rheumatoid Arthritis Consortium
(NARAC) data. We analyzed 2705 SNPs on chromosome
9, ranging from 91,730,970 kb to 138,303,776 kb with
minor allele frequency greater than 0.01 and no missing
genotypes. This area covers the location where the most
significant SNP (rs3761847) was reported by Plenge
et al. [5]. We checked all 2705 SNPs for Hardy-Weinberg
equilibrium (HWE) in the controls using PLINK [6] and
did not find any SNP significantly violate HWE assump-
tion after using the Bonferroni adjustment for multiple
comparisons. The SNPs were coded in two ways:
dominant and additive.

We divided the sample into a discovering sample (N =
1031) and a replication sample (N = 1031). First, we fit
Bayesian logistic regression with a Gaussian prior using
BBRBMR software on the training sample. We boot-
strapped 100 times to provide standard error of the
estimated coefficients. Second, we selected the top 300
SNPs according to two criteria: 1) the absolute value of
the coefficients, and 2) the ratio of the coefficients to
their bootstrapped standard errors (z scores). Selecting
variables based on the absolute value of the coefficients
instead of z scores may provide more reproducible
results [7]. Especially for the SNPs with large signals and
large variability, the z score may be low, but the
coefficient may be large. We compare results using
these two selection criteria. Third, we conducted chi-
square tests on the 300 selected top-ranking SNPs using
the independent testing sample. We analyzed data under
both a dominant and additive model.

Results
Simulations
For the Gaussian prior with sample size 250 and high
odds ratio (odds ratio ranging from 2 to 2.5), the average
number of correctly identified SNPs in the top 20 SNPs
selected by the magnitude of the regression coefficients is

8.3 (out of the 10 disease-associated SNPs). For the same
prior and the sample size but with moderate odds ratio
(odds ratio ranging from 1.5 to 2), the average number
of correctly identified SNPs is 6.7. When decreasing the
sample size to 150, in the high and moderate odds ratio
model, the average number of correctly identified SNPs
is 7.4 and 6.4, respectively. The consistencies (the
average percent times of each disease-contributing
variable being selected across simulation data sets) in
the above four settings ranges from 0.73 to 0.97, 0.53 to
0.77, 0.6 to 0.87, and 0.57 to 0.73. For the Laplace prior,
the average numbers of SNPs correctly identified in each
of the four settings were: 6.7, 4.5, 4.2, and 4.0,
respectively. The consistencies were lower than the
Gaussian prior.

NARAC data analysis
For the Bayesian logistic regression with 2705 SNPs, the
number of iteration in the Markov-Chain Monte Carlo
calculation was 250 for the additive model and 187 for
the dominance model. Convergence was reached with
threshold 0.005. For the dominant model, the highest z
score was 7.16 (rs7864653 at 100,860,678 kb). For the
additive model, the highest z score was 8.02 (rs1407869
at 101,353,456 kb). Figure 1 displays the z scores for all
2705 SNPs. Table 1 shows numerical results of the
highest ranked SNPs. Several top-ranked SNPs lie in the
region where the most significant SNP was reported by
Plenge et al. [5] (rs3761847 at 120,769,793 kb): for
example, rs2900180 at 120,785,936 kb and rs1953216
at 120,720,054 kb.

We selected the top 300 SNPs and performed single-SNP
analysis using the independent testing set of 1031
subjects. LD plot revealed that the selected SNPs had
lower intermarker LD than the total marker map (not
shown). Table 2 summarizes the top 10 SNPs with the
lowest p-values in each model. The top three SNPs in the
additive model were in the region reported by Plenge
et al. [5]. Instead of selecting by z scores, we also selected
the top 300 SNPs by the absolute value of the regression
coefficients. For the additive model, selecting by
absolute value of b or by z score provided the same
ranking for the top 14 SNPs. For the dominant model,
there were 10 overlapping SNPs for the two selection
criteria among the top 15 SNPs. Figure 2 depicts the
p-values of the SNPs selected by the two criteria: circles
for the z score method and crosses for b-based method.
The two criteria selected similar sets of SNPs.

Discussion
We propose a Bayesian logistic regression procedure to
select important SNPs based on the z scores or the
regression coefficient estimates for further analysis. From
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Figure 1
p-Values for 2705 SNPs in the Bayesian logistic regression (Gaussian prior): additive model (left panel) and
dominant model (right panel).

Table 1: Bayesian logistic regression of 2705 SNPs on chromosome 9

Additive model Dominant model

Rank SNP Position abs (z-score) SNP Position abs (z-score)

1 rs1407869 101353456 8.02 rs7864653 100860678 7.16
2 rs4437724 113188649 7.76 rs10989329 100794635 7.16
3 rs10120479 111426956 6.97 rs4237190 97922972 6.58
4 rs9697192 116879138 6.97 rs6478644 123942505 6.42
5 rs3824535 122763410 6.90 rs1407869 101353456 6.03
6 rs10491578 116463442 6.39 rs2229594 101204219 5.97
7 rs10121681 111718477 6.37 rs10820559 103716588 5.87
8 rs694428 117692812 6.13 rs1536705 126851425 5.86
9 rs2900180 120785936 5.96 rs2564362 123365200 5.74
10 rs11243755 132287257 5.96 rs10978456 106155366 5.73

Table 2: Single-SNP analysis of the top 300 selected SNPs

Additive model Dominant model

Rank SNP Position p-Value SNP Position p-Value

1 rs2900180 120785936 6.24 × 10-9 rs2900180 120785936 6.24 × 10-9

2 rs1953126 120720054 2.76 × 10-8 rs11787779 114820894 6.89 × 10-5

3 rs942152 121031239 3.94 × 10-6 rs17148869 132180015 1.00 × 10-4

4 rs7858974 91959665 1.26 × 10-5 rs7862566 117133575 2.00 × 10-4

5 rs11787779 114820894 6.89 × 10-5 rs4978629 107708375 3.00 × 10-4

6 rs6478300 117115323 7.12 × 10-5 rs4978890 110046695 3.00 × 10-4

7 rs989980 106309592 1.00 × 10-4 rs1333914 119662788 4.00 × 10-4

8 rs17148869 132180015 1.00 × 10-4 rs1332408 122271713 4.00 × 10-4

9 rs7862566 117133575 2.00 × 10-4 rs2095069 94782055 0.001
10 rs945246 119953710 2.00 × 10-4 rs4743420 100567644 0.0011
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the simulation studies, when using a Gaussian prior, the
percentage of causal SNPs correctly selected ranges from
64% to 83% among the top 20% SNPs. For the Laplace
prior, the percentage of correctly identified causal SNPs
ranges from 40% to 67%. The Gaussian prior outperforms
Laplace prior, which could be attributable to a less stringent
feature selection criterion employed for the Gaussian prior.

Among the top 300 SNPs selected by the z scores for the
dominance model, three are significant after adjusting
for multiple comparisons (see Table 2). For the additive
model, five additional SNPs are significant after multiple
comparisons adjustment. These SNPs lie in a region from
91,959,665 kb to 132,180,015 kb on chromosome 9 (LD
plots not included due to space limitations). Three of the
eight SNPs are in the region reported in Plenge et al. [5]
(rs1953126, rs2900180, and rs942152), and two of
them are in LD (rs1953126 and rs2900180). One of
these SNPs, rs1953126, was reported in a study of 475
Caucasian patients [8] to be significantly associated with
rheumatoid arthritis (odds ratio 1.28, CI 1.16-1.40,
trend p-value = 1.45 × 10-6). The other five SNPs are not
in the candidate region and are not in LD with SNPs in
the region. The significance of other SNPs deserves
further investigation in an independent sample.

An alternative one-step approach would be reporting
permutation p-values of Bayesian logistic regression with
all SNPs on the whole sample. However, it is well known
that increasing number of predictors, and therefore the
number of parameters, in a multivariate analysis may
reduce power. The two-step approach provides a balance

between the need to reduce multiple comparisons and the
loss of power due to increasing number of parameters.

We only analyzed SNPs with no missing data due to
the incapability of handling missing covariates data of the
BBRBMR software. One solution is to first impute the
missing genotypes and then run the Bayesian regression on
the imputed data. An alternative is to handle missing data
directly in a Bayesian analysis by data augmentation.

Here the priors are assumed to be independent and their
variances are assumed to be the same. We choose prior
variance by cross-validation. An alternative strategy
would be specifying a hyper-prior distribution (such as
non-informative prior). To incorporate prior knowledge
such as physical distance between the SNPs, one can
specify prior distribution to have distance-based correla-
tion. How to specify such a correlation for a large scale
regression is worth further attention.

Conclusion
Large scale Bayesian logistic regression is useful to analyze
genome wide case-control data with large number of SNPs.
Coefficient estimates or z scores from such regression
can be used to select important SNPs for further genetic
analysis. Such procedure reduces number of tests per-
formed and alleviates problem of multiple comparisons.

List of abbreviations used
GAW: Genetic Analysis Workshop; GWA: Genome-
wide association; HWE: Hardy-Weinberg equilibrium;

Figure 2
p-Values of the top 300 SNPs selected by b or z scores (single-SNP analysis): additive model (left panel) and
dominant model (right panel).
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LD: Linkage disequilibrium; NARAC: North American
Rheumatoid Arthritis Consortium; SNP: Single-nucleo-
tide polymorphism.
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