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Abstract

Background: Genome-wide approaches to analyze single nucleotide polymorphism (SNP) data
have proliferated due to the increased availability and affordability of markers, but in practice a small
number of markers may be selected from sets that do not approach dense genome-wide coverage.
This study focused on a genome-wide approach to identify markers useful to a breeding program
using a Bayesian method to estimate effects for markers distributed across the genome at varied
densities. A simulated dataset containing 4665 individual phenotypes for a quantitative trait and
genotypes for 6000 SNPs spaced in 0.1 cM increments across six chromosomes was analyzed using
a Bayesian approach in which effects for all single markers are simultaneously estimated. The
dataset was also analyzed with marker densities reduced to 0.5, 1.0, 2.0 and 5.0 cM. Type | errors
were not a major concern but replications of each analysis were performed to determine
acceptance of estimated marker effects.

Results: The Bayesian analysis of the original dataset was able to estimate genetic values for
markers in a small number of regions while shrinking other marker effects to zero. Analysis of the
reduced density datasets also showed clear signals in a small number of regions where some effects
appeared to be distributed across multiple markers. Replicates of the analyses provided evidence
for regions with moderate and large effects.

Conclusion: A Bayesian multiple marker approach appears to be suitable for predicting genetic
values, even with reduced density datasets where large numbers of markers are not yet available
for many species. These predicted genetic values can be implemented in marker assisted selection
programs.

Background otyping efforts. Meuwissen et al. [1] introduced Bayesian
Genome-wide approaches to analyze single nucleotide = methods to predict genetic values of animals for selection
polymorphism (SNP) data have proliferated due to the  using SNP haplotypes with dense genome-wide coverage.
increased availability and affordability of large-scale gen- ~ Xu [2] applied this approach to both real and simulated
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populations in a quantitative trait loci (QTL) mapping
framework, using genome-wide SNPs. These methods
generally assume marker density is high and animals can
be genotyped at each stage for all markers, which may not
always be realistic. In practice only a relatively small
number of SNPs may be included in a genetic evaluation
system and the set from which they are selected may not
approach dense genome-wide coverage, for example, in
pigs a complete genome map and high density chips are
not currently available. Even with these limitations
genome-wide strategies may be used to identify the best
subset of SNPs to use in marker assisted selection (MAS),
but little is known about how these strategies perform
when density is low by necessity, compared to more opti-
mal levels.

This study used a Bayesian method originally designed for
genome-wide selection to estimate effects for SNPs dis-
tributed across the genome and evaluated the behaviour
of a multiple marker approach to identify interesting
marker subsets and genomic regions that may be useful
for MAS programs, when densities were varied.

Methods

The dataset for analysis was simulated as part of the 12th
QTLMAS Workshop, see [3] for details. A subset of the
data containing 4665 individual phenotypes for a quanti-
tative trait and genotypes for 6000 SNPs spaced in 0.1 cM
increments across six chromosomes was used in the anal-
ysis. The first SNP on each chromosome was positioned at
zero cM and subsequent SNPs assigned relative positions.
Minor allele frequencies (MAF) were calculated and SNPs
with MAF < 0.001 were excluded, yielding 5923 SNPs
from the original set. The exclusions meant that the dis-
tance between some SNPs was greater than 0.1 cM, but the
increase in overall average distance was very small (from
0.1t0 0.101 cM).

Marker (QTL) effects were estimated using the Bayesian
procedure described by Meuwissen et al. [1] and Xu [2]
where all single markers are fit simultaneously as random
variables to estimate posterior means and variances for
each. The terms marker and QTL are used interchangeably
throughout, where a marker is the QTL or is representative
of a QTL in proportion to the linkage disequilibrium (LD)
between the two. In this case the marker effect included
the additive component only. The prior for the marker
variance followed ter Braak et al. [4] where the variance is
sampled from an inverse chi-square distribution with (1-
28) d.f; 6 = 0.002 for this study. A Bayesian multiple-
marker analysis (MMA) was performed separately for each
chromosome, due to the computational resources
required, under the assumption that LD across chromo-
somes was minimal. Each analysis included 50,000 Gibbs
samples where the first 20,000 sampled parameter values
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were discarded as burn-in. Following burn-in, samples
were saved for every 20 rounds. Posterior means are
reported as marker (additive) effects.

A single marker analysis (SMA) using a standard BLUP
approach was also performed on all SNPs. Each SMA
included the additive effect of a single marker as a fixed
factor and the effect of pedigree (a random animal effect)
so the analysis could be used as a comparison to the Baye-
sian approach where the effect of pedigree should be
implicitly included with dense marker coverage.

Each analysis was performed on the original data subset,
using all phenotypes, where marker spacing was 0.1 <M
and additionally with marker spacing set at 0.5, 1.0, 2.0
and 5.0 cM. The new subsets contained (with low MAF
markers removed) 1179, 588, 296 and 116 markers,
respectively. Type I errors were not a major concern as the
specific location of QTL are not necessarily of interest
when identifying markers for breeding programs, but
analyses were replicated 100 times as a measure of the reli-
ability of the estimated marker effects and, thus, the use-
fulness of the markers.

Results

Computation time

All Bayesian analyses were performed on a standard quad-
core Windows PC (Intel Xeon 3.00 GHz processor; 3.00
GB RAM) implemented in a serial Fortran program. Sim-
ple modifications were made to the published algorithm
[2] to improve computational efficiency. The time needed
to run the full dataset (0.1 cM spacing) was ~11 h per
chromosome, dropping considerably with the reduction
in number of markers. At 0.5 cM spacing the runtime was
60 min per chromosome, 33 min at 1.0 cM, 7 min at 2.0
cM and 2 min at 5.0 cM.

Original dataset

The marker effects estimated by the Bayesian MMA and
SMA are shown in Figure 1, plotted against genome loca-
tion. Results are shown for chromosome 1 only for sim-
plicity. The Bayesian analysis showed clear signals for 13
markers in 8 small regions across chromosome 1, whereas
the rest of the marker effects were shrunk to zero. The
number of marker peaks on the other chromosomes
ranged from nine to sixteen with the average across all
being nearly thirteen (results not shown). The single
marker analysis yielded signals that were comparatively
much less clear, though several regions with peaks of large
effect indicate the presence of putative QTL.

In most cases the effects for single markers, or small
marker groupings, identified by the Bayesian analysis cor-
responded with effects for single markers or small regions
in the regression analysis in terms of position and effect
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Marker effects plotted by genome location for chromosome 1. (A) Single marker regression using all markers; (B)

Bayesian multiple marker analysis with marker spacing of 0.1 cM, (C) 0.5 cM, (D) 1.0 cM, (E) 2.0 cM and (F) 5.0 cM; (G) Simu-
lated QTL (see [3]). The vertical axis is the absolute marker (QTL) effect. The labels are the position of markers with non-zero
effects in the Bayesian analysis, or the position of the simulated QTL.
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size. In cases where there was not one-to-one correspond-
ence between single marker peaks in the two analyses the
multiple marker approach appears to distribute effects
across multiple nearby markers in a given region marking
a presumed QTL. This is evidenced by the fact that some
marker peaks in the Bayesian analysis (e.g., at 19.5 cM)
closely match the magnitude of effect in the single marker
analysis while other peaks (e.g, at 39.3 and 39.8 cM)
appear to combine to represent a single QTL effect.

One peak in the Bayesian analysis (at 89 cM) represented
the smallest of the estimated effects and was not identified
by the SMA. In Bayesian terms there is only a small
amount evidence for a QTL at this location and because
the Bayesian approach does not generally consider signif-
icance of effects, this peak is simply identified as having a
small posterior estimate in a single run. More evidence of
an effect (or lack of effect) was obtained from evaluation
of the dataset replication (see below).

The use of the replicate analyses provides some measure
of the reliability of, or support for, marker effect estimates
(results not shown). The replicates showed that the peaks
at 19.5 and 77.7 ctM (Figure 1), near a large and moderate
QTL respectively (see [3]), were represented in at least
one-half of the replicates. Peaks at 39.3, 39.8, 52.6 and
53.4 <M were near (<2 cM) simulated QTL and also repre-
sented small regions appearing in multiple replicates,
though less than 50 percent of the time in all cases. Peaks
at 58.6, 83.7 and 89.0 cM were more distant from QTL,
where the first peak had little support from the replicates,
but the second and third appeared more than 20 times
and were apparently false positive results.

Datasets with varied marker densities

The marker effects estimated by the Bayesian MMA for
marker spacing 0.5, 1.0, 2.0 and 5.0 cM are shown in Fig-
ure 1, plotted against genome location. Results are pre-
sented for chromosome 1 only. The Bayesian analysis
shows clear signals for effects when markers were spaced
from 0.5 to 5.0 cM apart. The number of peaks was similar
across all chromosomes but the average number
decreased from nearly eight at the 0.5 cM spacing to two
and one-half at 5.0 cM (results not shown). The locations
of the peaks on chromosome 1 compare well with those
in the original dataset, where the magnitude of the abso-
lute effects was similar. The largest peak in the Bayesian
analysis of the original dataset was at 19.5 cm (near the
largest QTL at 20.0 ctM [3]), which is seen also in the 0.5
M spacing dataset. With the increase in spacing to 1.0 cM
the peak at 19.5 cM disappears as this marker is no longer
included in the analysis, but the effect is divided between
the two closest flanking markers where the sum of the
absolute effects nears the magnitude of the original peak.
Analysis with the 2.0 and 5.0 <M datasets also shows a
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peak near the 19.5 ¢cM position with smaller effects sizes
than the original peak, but larger than the effect of the
same marker in the 1.0 cM dataset, where part of the effect
was apparently absorbed by the flanking marker.

Fewer peaks were observed with the reduced densities,
compared to the original, as might be expected where the
probability of a marker being in LD with a QTL is reduced
with increased distances. There is seemingly also less like-
lihood of multiple markers sharing QTL effects causing
multiple peaks. The combination of reduced LD and
small effect sizes reduces the likelihood of sampling non-
zero effects, which may or may not be real, and could
explain the disappearance of the peak at 89 cM in the orig-
inal analysis and why the effect was not shifted to a nearby
marker. Conversely, the addition of new peaks from anal-
ysis of the reduced density datasets was unexpected. A
peak between 73 and 74 ctM in the 0.5, 1.0 and 2.0 analy-
ses is distant from any previously identified peaks, includ-
ing in the single marker regression. It is possible that the
reduction in marker density, which results in certain
markers being removed from the analysis, shifts the effect
from a more distant QTL (e.g., the original peaks ~77 cM
representing a real QTL, but not present in the reduced
analyses) and that this new peak actually represents this
QTL effect. There was no support for a QTL effect between
73 and 74 cM in the analysis replicates and indeed a QTL
was not simulated in this region [3]. A similar situation
was observed for a peak at 98 <M (0.5, 1.0 and 2.0 cM
spacing), which was not near a simulated QTL. More work
is needed using real data to evaluate such effects.

Interestingly, even with markers spaced at 5 cM, a distance
where average LD between adjacent markers, and presum-
ably between markers and QTL, will be low in outbred
livestock species, two peaks on chromosome 1 consisting
of four markers were identified by the Bayesian analysis.
These peaks correspond with peaks in all of the previous
analyses, including the single marker regression, and were
suggestive of large QTL effects in these regions. In fact,
each of the four markers appeared in nearly 100 percent
of the replicates for this dataset (5.0 cM spacing). The
peaks at 15, 20 and 25 cM are the nearest markers to the
large QTL simulated at 19.5 cM and the peak at 45 <M was
the nearest marker (except the marker at 35 cM, which was
equidistant) to the large QTL at 40.0 cM [3]. Curiously,
the marker located at 40.0 cM had effects shrunk to zero
in all analyses. Genomic regions with smaller QTL were
not identified when density was reduced to 5 cM.

Discussion

Xu [2] applied the Bayesian method described by Meuwis-
sen et al. [1] to real and simulated populations to estimate
polygenic effects using genome-wide SNPs, with marker
densities much lower than in the original work (5 and 11
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cM). Xu found clear signals for putative QTL that corre-
sponded very closely to the large peaks in a single marker
regression, for the real data, and were at the position of
the true QTL in the simulated data. Effects that were large
in the single marker regression were large in the Bayesian
analysis, while smaller effects were shrunk. In the current
study there were multiple peaks in close proximity that
were identified with dense marker coverage (0.1 cM spac-
ing) and the regions with larger effects in the single
marker analysis were generally identified by the Bayesian
MMA, where effect sizes were of similar magnitude. The
marker densities were greater in the current study for all
datasets, except one, and it is likely that the close proxim-
ity of the markers resulted in a distribution of effects
among nearby markers and thus multiple peaks in the
same region. Replications of the Bayesian analysis high-
light this effect as regions with small QTL yielded non-
zero marker effects in multiple positions, while regions
with large QTL were identified at few positions in many
replicates. The Bayesian approach using dense coverage,
however, was able to isolate QTL effects, even if distrib-
uted across multiple markers, and shrink many spurious
effects to zero. The replicate analysis was also able to iden-
tify peaks (or small regions) where there was little support
for a QTL in that region. In the original dataset a replicate
threshold of 50 percent would yield two markers near two
of the largest QTL, but would discard several markers in
other interesting regions including the markers near the
large QTL at 40.0 cM, along with regions not containing a
QTL. Further work is needed to identify the appropriate
replicate size and threshold level, especially when density
is high.

Results from this study showed a decrease in the number
of effect peaks with a reduction in marker density, but
major regions (e.g. particularly around the QTL at 19.5
and 40.0 cM) were still clearly identified by nearby mark-
ers when the closest markers to a particular putative QTL
were no longer in the dataset. There is a dearth of litera-
ture detailing the effect of decreased density on genome-
wide selection approaches for marker association or QTL
mapping; however this work describes a potential inter-
mediate step in the calculation of genomic breeding val-
ues when high density coverage is not practical (or
possible). Solberg et al. [5] found a decrease in accuracy of
estimated breeding values (EBV) calculated from single
marker effects (using a Bayesian approach) at a density of
1 cM versus 0.5 cM, but still high (0.66) when considering
marker information alone was used. Similarly, Calus et al.
[6] found moderately high accuracies for EBV from
marker effects predicted using a Bayesian model (but also
including a polygenic effect) when average marker density
was 2.59 cM. These results indicate that there is value in
predicting genetic effects across the genome at lower den-
sities, where even the two peaks identified on chromo-
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some 1 in the current study, when the density was 5 cM,
will add information to improve the accuracy of EBV. The
marker effects that remain when density is reduced repre-
sent larger QTL that will account for most of the genetic
variance and the smaller effects that might be missed
using the Bayesian framework described here may have
little impact on the total genetic value for a trait.

Epilogue

The performance of the Bayesian method described here
can be evaluated in light of the simulated QTL effects
described in [3], with specific comparisons discussed pre-
viously in the text. The Bayesian multiple marker analysis
was successful in identifying markers near the three QTL
(on Chromosome 1) accounting for more than one per-
cent of phenotypic variance and markers near one of the
small QTL (52.5 cM), but effects were generally overesti-
mated. Markers for the QTL at 50.4 cM were apparently
missed, but the proximity of this QTL to the one at 52.5
cM may have caused some of the effects to be absorbed
into markers nearer to 52.5 cM than 50.4 cM. In this case
both QTL effects would be inherently captured by the
model due to the simultaneous fit of the marker effects.
There were four marker peaks that were apparent false-
positives as they were distant from any simulated QTL
(see Figure 1). A grouping of these peaks around 84 cM
(identified in multiple replications) would suggest a
nearby QTL, maybe absorbing some of the effect from the
QTL at 77.2 cM, but the distance is seemingly too large for
this to be the case. The reduction in density yielded differ-
ent subsets of markers with non-zero effects, as the effects
shifted, but markers near the two largest QTL (20.0 and
40.0 cM) were identified at each level. In general the Baye-
sian approach identified markers near QTL that are large
enough to have practical implications for a breeding pro-
gram, even when marker density was reduced, while the
effect of identifying apparent false-positives and in overes-
timating effect sizes is not known.

Conclusion

A Bayesian multiple marker approach was able to identify
markers or small regions with effects corresponding to
putative QTL with much clearer signals than in a single
marker regression. Replication of the analyses provided
some measure of acceptance for each of the marker effects.
The Bayesian analysis performed well when marker den-
sity was reduced in part by distributing effects across adja-
cent markers. This approach appears to be suitable for
predicting genetic values, even with reduced marker den-
sities, where large numbers of markers are not yet availa-
ble for many species. These genetic values can be
implemented in MAS programs.
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