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Abstract
This study evaluated the utility of unrelated controls and flanking markers when performing joint
modeling of linkage and association by the LAMP software (version 0.0.6) [Am J Hum Genet 2005,
76:934–949; Am J Hum Genet 2006, 78:778–792]. Analyses were conducted on the simulated
rheumatoid arthritis (RA) data in Genetic Analysis Workshop 15 (GAW15), using single-nucleotide
polymorphisms (SNPs) on chromosome 6 over the 100 simulated replicates. We found that the
LOD score for testing association in the presence of linkage dramatically increased when unrelated
controls were added to affected sib pairs (ASPs), and that choosing a sufficient number of flanking
markers is critical in order to distinguish between perfect linkage disequilibrium (which leads to the
conclusion of a measured SNP explaining a linkage signal) and incomplete linkage disequilibrium
(which leads to the conclusion of other undetected causal variants in a linkage region).

Background
The DRB1 alleles located in the HLA region of chromo-
some 6 have been found to affect susceptibility to rheu-
matoid arthritis (RA), and linkage at HLA was confirmed
by several studies [1-4]. However, because linkage meas-
ures the effect of a large chromosomal region, follow-up
association studies are needed to identify a causative
locus. Traditional association studies do not distinguish a
causal gene and a gene with indirect effects through link-
age disequilibrium (LD); rather, they test the presence of
LD, instead of the presence of perfect LD. Among the
measures of LD that have been proposed for two-locus

haplotype data, the two most common are |D'| and r2

[5,6]: |D'| = 1 when the deviation of a haplotype fre-
quency from randomly associated alleles attains its maxi-
mum value, given the marginal allele frequencies; r2 = 1
when two single-nucleotide polymorphisms (SNPs) are
perfectly correlated, sometimes called "perfect LD". This
can arise when two SNPs arose on the same branch of the
genealogy and remain undisrupted by recombination. In
contrast, r2 can have a value less than 1 when SNPs arose
on different branches, or if an initially strong correlation
has been disrupted by crossing over [7]. Here we distin-
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guish between perfect LD (r2 = 1) and complete LD (|D'|
= 1).

To identify genes perfectly associated with disease, Li et al.
[8] proposed a method to jointly model linkage and asso-
ciation, such that it can detect a marker's ability to explain
a linkage signal, either partially or fully. They also dis-
cussed efficient study designs to test for association using
sibship and unrelated individuals [9]. They found that
when the disease is influenced by multiple genes, affected
sib pairs (ASPs) provide more association information
than singleton cases. Furthermore, a case-control study
design can help to detect genes with small effects in the
presence of genes with much larger effects.

To study the power of association tests in a linked region
with different study designs, we used the SNP data on
chromosome 6 for all 100 simulated replicates, and eval-
uated designs that either use only ASPs or combine ASPs
with controls. All analyses were conducted with the soft-
ware LAMP (version 0.0.6). We studied the simulated RA
data with answers, to compare the LOD scores provided
by LAMP under the two designs.

Methods
Phenotype, genotypes, and map
Using RA affection status as a binary trait, there were 1500
families with one ASP and their parents, all genotyped on
674 SNPs along chromosome 6. Additionally, 2000 unre-
lated controls were included in each replicate. There were
no missing data or genotype errors. For the LAMP analy-
ses, we specified the lifetime prevalence of RA to be
0.0107 as stated in the introduction of the simulated RA
data. The sex-averaged map locations (in Haldane centi-
morgans) were used for the maps.

Four analysis models

The software LAMP was used to fit four models by maxi-
mum likelihood: 1) a base model (BM) for no linkage and

no association, L(θ = , r2 = 0), where θ is the recombi-

nation fraction and r2 is the measure of LD. LAMP esti-

mates marker allele frequencies with the assumption of
Hardy-Weinberg equilibrium, and there is only one fitted
parameter for each SNP; 2) a linkage equilibrium model

(LE) for linkage without association, L(θ = 0, r2 = 0).
LAMP estimates disease and marker allele frequencies, as
well as the penetrances for disease genotypes. The estima-
tion of these parameters is constrained by the assumed
disease prevalence; 3) a general model (GM) for linkage

with any level of association, L(θ = 0, 0 <r2 < 1). This most
general model estimates three marker-disease haplotype
frequencies and the penetrances for disease genotypes; 4)
a linkage disequilibrium model (LD) for linkage with

complete association, L(θ = 0, r2 = 1). For this model, one
of the marker alleles is assumed to directly affect disease
susceptibility. The marker allele frequency and the pene-
trances for disease genotypes are estimated. The four mod-
els are summarized in Table 1.

Linkage and association tests
The four models were used to create three likelihood ratio
tests, and hence LOD scores: 1) a test for linkage, 2) a test
for association in the presence of linkage, and 3) a test for
other linked variants. In contrast to traditional parametric
linkage analyses that specify a genetic disease model,
LAMP calculates parametric maximized LOD scores by
maximizing over all assumed model parameters. The
method allows LD between the measured candidate SNP
and an unobserved disease allele, but assumes linkage
equilibrium between the flanking markers and the meas-
ured candidate SNP [8]. Note that this assumption may
not hold for high-density SNP data. For the 674 SNPs on
chromosome 6, there were 62 marker clusters that had
large within-block LD, identified by setting the r2 thresh-
old to 0.4 in Merlin (version 1.0.1, with a command "mer-
lin -d datfile -p pedfile -m mapfile --npl --grid 1 --rsq 0.4 --
cfreq") [10,11]. To avoid problems of LD between the can-
didate SNP and the flanking markers, we eliminated SNPs
that had large LD values by selecting a tag-SNP from each
cluster. In each marker cluster, we kept the SNP with the
highest marker heterozygosity (calculated by pedstats,

1
2

Table 1: Four models compared in the three likelihood-ratio tests

Modela Likelihood d.f. Parametersb LR tests

(1) BM
L(θ = , r2 = 0)

1 pA

(2) LE L(θ = 0, r2= 0) 4 pA, pD, fDD, fDd, fdd (2) vs. (1): test for linkage
(3) GM L(θ = 0, 0 <r2 < 1) 5 pDA, pDa, PdA, fDD, fDd, fdd (3) vs. (2): test for association in the presence of linkage
(4) LD L(θ = 0, r2 = 1) 3 pA, fDD, fDd, fdd (3) vs. (4): test for other linked variants

aBM, base model; LE, linkage equilibrium; GM, general model; LD, linkage disequilibrium.
bPA = marker allele frequency; PD = disease allele frequency; fg = P(affected | g), g ∈ {DD, Dd, dd}; pDA, pDa, pdA are the marker-disease haplotype 
frequencies.
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version 0.6.3), and deleted other SNPs in the same cluster.
There were 581 tag-SNPs after removing those with large
LD.

Two study designs
We considered two study designs: 1500 ASPs alone
(ASPs), and 1500 ASPs with unrelated 2000 controls
(ASPs+controls). The combined data should be more
powerful to detect association, but not linkage. Our aims
were to evaluate the increase in LOD scores provided by
controls for the test for association (in the presence of
linkage), and to evaluate the benefit of flanking markers
for the test for other linked variants.

Results
Contribution of unrelated controls to LOD scores
Results from the simulated replicates were very consistent,
as summarized in Table 2, including the mean and range
of LOD scores at SNP6_153 and SNP6_162 across the 100
replicates. These two SNPs were selected because they

caused peaks for the test of association in the presence of
linkage (see the second column of Figure 1). The peak
linkage was at SNP6_153 (49.461 cM) in 75 out of 100
replicates, and at SNP6_154 (49.466 cM) in the other 25
replicates. Note that the two study designs resulted in the
same LOD scores for linkage, since unrelated controls pro-
vided no information for linkage. The LOD score for asso-
ciation in the presence of linkage showed an extremely
large value at SNP6_153 in all replicates for both study
designs. Another signal was detected at SNP6_162
(54.625 cM). From Table 2, we can see that controls
increased the LOD scores for the tests for association in
the presence of linkage by approximately 60%. Further-
more, for SNP6_153, adding controls significantly
increased the LOD score for the test for other linked vari-
ants, suggesting that SNP6_153 is not in perfect LD with a
disease allele, and hence, that there may be other associ-
ated alleles in the region. This result agrees with the simu-
lation scenario. In the simulated data, none of the 674

LOD scores for test of linkage and test of association in the presence of linkageFigure 1
LOD scores for test of linkage and test of association in the presence of linkage. Simulated Replicate 45, represent-
ative of most 100 replicates, was randomly selected to illustrate key features. For the tests of linkage (left column), the black 
solid lines are the LOD scores obtained without the flanking markers, while the blue broken lines are the LOD scores 
obtained with a grid of flanking markers in the surrounding 30-cM region. For the tests for association in the presence of link-
age (right column), the black solid lines are the LOD scores for ASPs+controls, while the red broken lines are the LOD scores 
for ASPs.
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SNPs on chromosome 6 was in perfect LD (r2 = 1) with the
causal locus.

Contribution of flanking markers to LOD scores
In addition to the impact of unrelated controls, flanking
markers can have a large impact on LOD scores. Flanking
markers smooth the LOD scores of the test for linkage, as
we can see from the first column of Figure 1. Moreover,
they are necessary to distinguish between perfect LD ver-
sus other linked variants, because this test relies on the
evidence for linkage in the chromosomal region. To eval-
uate the impact of flanking markers, we used the SNPs
located from 40 to 60 cM as the flanking markers,
although only tag-SNPs were used. This region was high-
lighted because it presented a strong linkage signal, as we
can see from Figure 1 (blue line in the upper-left plot).
The black line in the first column of Figure 1 illustrates
that the LOD scores for linkage in the linked region were
drastically reduced when flanking markers were not used.
Table 2 illustrates that the LOD scores for other linked var-
iants were much too small when flanking markers were
not used, giving the misleading conclusion that these two
SNPs are in perfect LD with a disease causing allele.

Discussion and conclusion
The joint modeling of linkage and association proposed
by Li et al. [8] uses genotype information contributed by
both the candidate SNP and the flanking markers, which
they claimed outperforms the method of Göring and Ter-
williger [12]. Their method identifies association in the
presence of linkage, and can sometimes distinguish
between perfect LD (leading to the conclusion of a causa-
tive SNP) and incomplete LD (leading to the conclusion

of other causal variants in the region). A limitation is the
assumption of linkage equilibrium between the candidate
SNP and the flanking markers. This assumption is hard to
meet with high-density SNP data. One way to eliminate
LD among markers is to select tag-SNPs from each marker
cluster. Further research to improve use of markers with
LD would be worthwhile, recognizing that this might
increase computational intensity.

In our analyses, we used sex-averaged maps without con-
sidering the sex differences in genetic map distances. The
results of testing for linkage, testing for association in the
presence of linkage, and testing for other linked variants
were consistent with the simulation answers. However,
ignoring sex differences in genetic maps may not lead to
accurate inferences when genotypes for only one parent of
each ASP are available [13]. A drawback of LAMP is that it
is computationally demanding to search for the maxi-
mum likelihood estimates, particularly when pedigree
data and microsatellite markers are used. To increase
power to test for association in the presence of linkage
without much computational intensity, combining ASPs
with unrelated controls is a worthwhile design. Finally,
our results emphasize the importance of choosing a suffi-
cient number of flanking markers to distinguish between
perfect LD and incomplete LD.
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Table 2: Mean LOD scores for the three tests summarized from 100 replicates

Test for linkage Test for association in the presence of linkage Test for other linked variants

Models compared LE vs. BM GM vs. LE GM vs. LD

d.f. 4 - 1 = 3 5 - 4 = 1 5 - 3 = 2

SNP6_153 With flanking markers Without flanking markers

ASPs+controls 705.3
(range: 653.1–763.0)

7.8
(range: 2.2–17.9)
(powera: 100%)

6.8
(range: 1.8–15.5)
(power: 100%)

ASPs 132.3
(range: 105.9–152.9)

441.9
(range: 401.3–485.8)

4.1
(range: 0.8–12.6)
(power: 94%)

1.7
(range: 0.0–5.3)
(power: 53%)

SNP6_162
ASPs+controls 44.4

(range: 30.0–62.2)
59.1
(range: 39.5–81.1)
(power: 100%)

2.0
(range: 0.0–6.3)
(power: 63%)

ASPs 9.1
(range: 3.4–15.8)

27.8
(range: 14.8–41.3)

58.9
(range: 39.7–81.0)
(power: 100%)

1.8
(range: 0.0–6.1)
(power: 55%)

aPower based on significance level of 0.05 and asymptotic chi-square distribution.
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