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Abstract
Genetic association studies offer an opportunity to find genetic variants underlying complex human
diseases. Various tests have been developed to improve their power. However, none of these tests
is uniformly best and it is usually unclear at the outset what test is best for a specific dataset. For
example, Hotelling's T2 test is best for normally distributed data, but it can lose considerable power
when normality is not met. To achieve satisfactory power in most cases, without compromising the
overall significance level, we propose to adopt a two-stage adaptive analysis strategy – several
statistics are compared on a portion of the samples at the first stage and the most powerful statistic
is then used for the remaining samples. We evaluated this procedure by mapping the quantitative
trait locus of IgM with the simulated data in Genetic Analysis Workshop 15 Problem 3. The results
show that the gain in power of the two-stage adaptive analysis procedure could be considerable
when the initial choice of test statistic is wrong, whereas the loss is relatively small in the case that
the optimal test chosen initially is correct.

Background
Association studies currently offer an exciting approach to
mapping complex quantitative trait loci (QTLs). Wallace
et al. [1] recently recommended a generalized Hotelling's
T2 test for QTL linkage disequilibrium (LD) mapping,
which is uniformly the best test for normally distributed
data. However, if the assumption of a normal distribution
is not met, T2 may lose considerable power. When the trait
distribution is unclear, some nonparametric tests may be
preferred because they are only slightly less powerful than

T2 when the trait is normally distributed, but much more
powerful than T2 in some cases of non-normality. In gen-
eral, it is unclear what test is the best when the trait distri-
bution is unknown. Some investigators only report the
most significant result from several statistics, but the type
I error rate cannot be properly controlled when this is
done. It is also not wise in this situation to use an
approach such as the Bonfferoni method to control the
type I error rate because the various tests are usually highly
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correlated and therefore the result will be overly conserv-
ative.

To achieve satisfactory power in most cases, without com-
promising the overall significance level, we consider
adopting a two-stage adaptive analysis strategy: several
statistics are compared on a portion of the samples in the
first stage and the statistic that is found to be most power-
ful is then used for the remaining samples. Previously,
two-stage strategies have been adopted in genetic associa-
tion studies to reduce the cost of genotyping [2,3] or the
penalty due to multiple testing when modeling gene ×
gene interactions [4]. Here, we apply this strategy for a dif-
ferent purpose: to select a powerful test for the data at
hand and hence obtain good power overall. We evaluate
this procedure of adaptively selecting the optimal test by
mapping the IgM QTL with the simulated data of Problem
3 in Genetic Analysis Workshop 15 (GAW15).

Methods
The procedure examines the power of various statistics
using a portion of the data in an exploratory first stage and
then applies this most powerful test to the rest of the data
in the second stage. The statistics from the two stages are
combined to make full use of the information. This
approach of combining the results of the two stages is
equivalent to a more general method of combining p-val-
ues. For the procedure of combining these p-values to be
valid, however, we need to specify before the analysis
which statistic will be used to obtain the p-value (p1) from
the exploratory stage in the combination. The p-value
from the second stage (p2) is calculated based on the most
powerful statistic found at the first stage. Under the null
hypothesis, each p value is, at least asymptotically, distrib-
uted uniformly on U(0, 1). The final decision then
depends on a combining function f(p1, p2). The most com-
mon such function may be Fisher's combination test [5],
which is defined by

f(p1, p2) = -2log(p1p2),

where under the null hypothesis Fisher's statistic will be
distributed as a χ2 with 4 degrees of freedom. Another
example is the weighted inverse normal method,

f(p1, p2) = 1 - Φ[w1Φ-1(1 - p1) + w2Φ-1(1 - p2)],

where Φ is the cumulative distribution function of a
standard normal distribution, 0 <wi < 1 and w1

2 + w2
2 = 1.

This statistic will be distributed as a standard normal dis-
tribution.

To obtain p2, we have to estimate the power of the various
statistics at the exploratory first stage. Traditional power
calculation methods require the trait distribution to be

known, which is not the case here. A bootstrap method of
using the data from the exploratory stage can be adopted
to approximate the power [6,7]. The bootstrap and per-
mutation are two often used nonparametric procedures. It
is often desired to obtain "exact" p-values by employing a
permutation procedure to generate the null distribution
of the statistic that is used for a test. Here, on the other
hand, we want to estimate the power of a statistic, and for
this we need the distribution of the statistics under the
alternative hypothesis; a permutation procedure cannot
be directly applied for this purpose. Let the trait values of
individuals with genotype g be denoted xg, where g = 0, 1,
2 for an additive SNP marker and g = 0, 1 for a recessive/
dominant marker. For this example, we assume a domi-
nant model for the rarer allele. We denote the sample size
for each genotype ng. We assume the distribution of trait
values for different genotypes have similar shape, but the
locations of the distributions are shifted by dg. The
hypothesis to detect association between a marker and the
trait is then defined as H0:d = 0. The power function of the
statistic T for d = δ at the significance level α is then given
by P(T; δ, α) The method of Collings and Hamilton [6] to
approximate P(T; δ, α) by a nonparametric bootstrap pro-
cedure is as follows:

1. For each genotype group g, a random sample of

, n2 <n0, trait values is drawn with replacement.

The sampled trait values are denoted Xg
b = (x1g

b,...,xng
b). A

simulation sample of trait values, Yg
b, is then obtained by

adding Xg
b to (0, δ), where 0 is a row vector of n0 elements

each of which is 0 and δ is row vector of n1 + n2 elements,

each of which is δ. The corresponding genotype groups are
set to be Gb = (0, 1).

2. Different statistics are calculated on the simulated sam-
ple values Yg

b and Gb, and the corresponding p-values (pg
b)

are recorded.

3. Steps 1 and 2 are repeated B times. The estimated power

function of  is given by .

4. Finally, we estimate the power of the different statistics
using the weighted average estimates of the different gen-

otype groups, given by .

We compared non-adaptive methods and this adaptive
method using the simulated data of Problem 3 in GAW15,
which has 100 replicates. For an adaptive method, we
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considered different proportions of samples at the explor-
atory stage (π1), different methods of combining tests
(Fisher's and the Inverse normal methods) and two statis-
tics (Hotelling's T2 [1] and the nonparametric Wilcoxon
statistic [8]). These statistics were calculated using the R
package (version 2.4.1). In each replicate, we sampled 200
independent individuals to map the IgM QTL. To examine
the validity of the various tests, we randomly selected
from each of the 100 replicates 10 SNPs that are not asso-
ciated with IgM and therefore from these results the type I
error rate is given by

Results
From Table 1, we can see that the two-stage analysis pro-
cedure maintains as good a type I error rate as a one-stage
analysis. Table 2 shows the empirical power for the differ-
ent analysis strategies. The first two rows of Tables 1 and
2 are the results from applying each of the two tests to the
whole data. Because the distribution of IgM clearly devi-
ates from a normal distribution, the loss of power of
Hotelling's T2 turns out to be severe. The two-stage analy-
sis obtains substantial gain in power by choosing the right
statistic for the second stage from "learning" at the explor-
atory stage. This analysis shows that using 30% of the
samples at the first stage gives a good prediction of the
better analytic method to use in terms of power. The
results also show that the difference between the two
methods of combining p-values is small.

Discussion
Two-stage designs have been applied to large-scale genetic
association studies to substantially reduce genotyping

cost while maintaining power. In addition to the knowl-
edge of which markers are promising, we can obtain infor-
mation about the distribution of the phenotype based on
the data from the exploratory stage. This knowledge is use-
ful for the choice of a statistic to use at the second stage
and can therefore lead to a considerable gain in power. In
our analysis, we evaluated this idea by considering just
two statistics. Hotelling's T2 has been proved to be a pow-
erful statistic, even with sample selection. However, the
advantage of T2 depends on the trait distribution. On the
other hand, although a nonparametric statistic is not the
most powerful one when normality of the trait holds, it
usually works well. So it is reasonable to consider combin-
ing the p-value of a nonparametric statistic from the
exploratory stage with the p-value of the most powerful
statistic for the second stage.

The idea of a two-stage analysis can be further generalized
in genetic association studies. Because LD patterns vary
greatly, it is often unclear whether a single-marker analysis
or a multiple-marker analysis or a haplotype-based analy-
sis is most powerful for a specific data set. Further work on
developing a data-driven adaptive procedure to choose
the type of analysis to perform on the second stage data
would be potentially useful.

Conclusion
The adaptive two-stage procedure can lead to considerable
gain in power by guiding the choice of a test based on the
knowledge learned from an exploratory stage. At the same
time, the type I error rate can be well controlled.
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Table 1: Type I error rate of various statistics

α = 0.05 α = 0.01

π1 Statistics Reverse normal Fisher Reverse normal Fisher

1 T2 0.032 0.032 0.010 0.010
Wilcoxon 0.044 0.044 0.010 0.010

0.3 T2, T2 a 0.054 0.072 0.012 0.020
Wilcoxon, Wilcoxon 0.050 0.054 0.010 0.014
Adaptive 1b 0.050 0.054 0.010 0.014
Adaptive 2c 0.056 0.048 0.014 0.01

0.5 T2, T2 a 0.046 0.046 0.008 0.010
Wilcoxon, Wilcoxon 0.052 0.048 0.014 0.012
Adaptive 1b 0.052 0.048 0.014 0.012
Adaptive 2c 0.042 0.032 0.014 0.016

aThe two statistics are those used at the first and second stages, respectively.
bThe prespecified statistic used for the exploratory stage is Wilcoxon.
cThe prespecified statistic used for the exploratory stage is T2.
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cThe prespecified statistic used for the exploratory stage is T2.
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