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Abstract
Background: The mRNA expression levels of genes have been shown to have discriminating
power for the classification of breast cancer. Studying the heritability of gene expression levels on
breast cancer related transcripts can lead to the identification of shared common regulators and
inter-regulation patterns, which would be important for dissecting the etiology of breast cancer.

Results: We applied multilocus association genome-wide scans to 18 breast cancer related
transcripts and combined the results with traditional linkage scans. Regulatory hotspots for these
transcripts were identified and some inter-regulation patterns were observed. We also derived
evidence on interacting genetic regulatory loci shared by a number of these transcripts.

Conclusion: In this paper, by restricting to a set of related genes, we were able to employ a more
detailed multilocus approach that evaluates both marginal and interaction association signals at each
single-nucleotide polymorphism. Interesting inter-regulation patterns and significant overlaps of
genetic regulators between transcripts were observed. Interaction association results returned
more expression quantitative trait locus hotspots that are significant.

Background
Breast cancer (MIM 114480) is a common and genetically
heterogeneous human disorder [1]. Many studies have
shown that gene expressions possess discriminating
power for the diagnosis of breast cancer (e.g., van't Veer et
al. [2]). Therefore, studying the genetic regulators of breast
cancer related gene expression transcripts would shed

light on the genetic mechanism of this disorder. Cur-
rently, the search for genetic regulators of expression traits
in humans has been underway through linkage or associ-
ation scans [3-5]. Morley et al. [4] measured the expres-
sion levels of 8500 transcripts using the Affymetrix
Human Focus Arrays on 194 individuals in 14 Centre
d'Etude du Polymorphisme Humain (CEPH) families.
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3554 of these transcripts were identified to have greater
between-subject variation than within-subject variation
and were then used for linkage analysis. For the linkage
analysis, genotypes of these CEPH individuals on 2882
single-nucleotide polymorphisms (SNPs) across the
genome were obtained from The SNP Consortium http://
snp.cshl.org/linkage maps/.

In this paper, we study transcripts related to breast cancer
susceptibility genes. Among the 3554 selected transcripts
in [4], we identified 18 transcripts that are related to seven
genes listed in the overview of breast cancer from OMIM
(the Online Mendelian Inheritance in Man). Treating the
expression levels of these genes as hereditable traits, we
used multilocus association genome scans, combined
with linkage scans, to study their regulation patterns and
identify joint features and inter-relations. Gene expres-
sions are likely to be complex traits that are regulated by
multiple genetic factors. Therefore, we used an extension
of our previous multilocus methods [6-8] to extract more
association information.

Methods
Data processing
For association and linkage scans, we studied the 2819
autosomal SNPs and the 18 transcripts listed in Figure 1.
86% of the SNPs have less than 10% missing genotypes
and only 1.3% SNPs have more than 20% missing geno-
types. Missing genotypes were imputed using fastPHASE
[9]. For SNPs with weak linkage disequilibrium (LD)
between them, the program is more likely to impute the
most common genotype, which may affect the efficiency
of our approach.

Association scans
Extended from previously studied multilocus association
scores on a dichotomous phenotype [6-8], a qGTD (quan-
titative genotype-trait distortion) statistic was proposed
for quantitative traits of unrelated individuals [10]. qGTD
is defined on the ranks of the trait values of n individuals,
i.e., {R1,...,Rn}. Given a set of k SNPs, there are 3k possible
multilocus genotypes. The association content of this set
of SNPs with the quantitative phenotype is then measured
by

where Si is the trait's rank sum on the ni individuals with
genotype i, and ni(n + 1)/2 is the expected value of Si
under the null hypothesis that these SNPs are not associ-
ated with the phenotype.

qGTD captures the differences between the observed rank
sums and those under the null hypothesis. The magnitude

of qGTD scores reflects the level of association with the
phenotype: the greater the value, the stronger the associa-
tion [10]. Unassociated SNPs add dimensions to the mul-
tilocus genotypes and lower the value of qGTD. Therefore,
a greedy screening algorithm is used to screen out SNPs
that do not contribute to increase the value of qGTD and
retain a cluster of SNPs that contribute important informa-
tion to the score. As discussed in [6-8], such a screening is
not informative for a large number of SNPs simultane-
ously due to sparseness in high dimensions. A random
subspace strategy is then employed, where the greedy
algorithm is repeated on a large number of random SNP
subsets. SNPs are then ranked by the numbers of times
(return frequencies) that they are retained by the screening
algorithm, which measure the overall importance of indi-
vidual SNPs.

To evaluate the importance of the SNPs in gene × gene
interactions, we further filtered the retained SNP clusters
from the qGTD screening by their qGTD scores and only
selected the top 1000 distinctive clusters with the highest
qGTD values. Using these 1000 clusters, we computed the
qGTD return frequencies for each SNP. As discussed previ-
ously, higher value of qGTD indicates stronger joint
effects from the SNPs on the quantitative phenotype.
SNPs that present more frequently in clusters with higher
qGTD values play a more critical role in gene × gene inter-
actions that decide the variation of the phenotype.

In this paper, we apply the above association scan
(repeated on 5 million random subsets) using the 56
unrelated grandparents in the 14 CEPH families. For each
selected expression trait, we selected the top 30 overall
important SNPs with the highest return frequencies, and
the top 30 important interaction SNPs with the highest
qGTD return frequencies, which give us a comparable
number of identified loci as that by the linkage scans.

Linkage scans
Linkage analysis was done on all 194 members of 14
CEPH families using the pedigree analysis package MER-
LIN [11]. The command pedwipe was first used to remove
unlikely genotypes in the pedigree data. Regression-based
linkage analysis for quantitative traits proposed by Sham
et al. [12] was applied to all 18 expression traits with esti-
mated mean, variance and heritability. The original data
only contain physical map. In our analysis, we used link-
age map provided by Sung et al. [13].

Clustering of transcripts based on identified regulatory loci
To summarize the inter-regulatory-relation between the
transcripts shown in the association scans, hierarchical
clustering with average link [14] was conducted based on
overall return frequencies, qGTD return frequencies, and
common pairs of interacting loci. The dissimilarity meas-
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ure for return frequencies (overall or qGTD) was 1 - corre-
lation coefficient between two transcripts. For each
transcript, we recorded the jointly returned SNPs in the
1000 qGTD-filtered clusters (see the section on association
scans) and counted the number of times that SNPs that
belong to a pair of loci (with loci defined as 5 cM bins on
the genome) were returned in one cluster. The dissimilar-
ity based on these interacting loci pairs is

where mij is the number of shared interacting loci pairs
between transcripts i and j, mi and mj are the total numbers
of interacting loci pairs for i and j, respectively, and m is
the total number of loci pairs on the genome. We also
clustered the transcripts based on their gene expression
values with dissimilarity being one minus the correlation.

Results and discussion
Combined association and linkage scans
Genome scan results for transcripts are arranged in the
rows of Figure 1. Several interesting patterns are observed.
First, association signals frequently cluster with linkage
signals. Actually, similar to Roeder et al. [15], we may use
linkage signals to control for false LD signals. However,
since we only used single-locus analysis in the linkage
scans, some loci may fail to have linkage signals if they are
in interactions when deciding the traits' variation and
thus have lower marginal signals. Second, both linkage
and association signals show overlaps between transcripts
that cannot be explained by chance, which is discussed in
the next section. The performance of the association scan
would also be greatly improved if denser SNP data were
available.

Transcription hotspots
Figure 2 displays aggregated linkage signals and associa-
tion signals for the 18 expression traits. Such overlapping
genetic regulators patterns are sometimes referred as
hotspots in the literature. The linkage signal is fairly clean
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Association and linkage scans for 18 breast cancer related transcriptsFigure 1
Association and linkage scans for 18 breast cancer related transcripts. Black curves are LOD scores from the linkage 
scans with the height of each row standardized by LOD = 5 and red dotted reference lines indicating LOD = 3. Top 30 SNPs 
with the strongest overall (blue ticks) and interaction (red ticks) association signal for a given expression trait are marked. A 
green triangle points out the genome alignment locus of the given expression sequence of that row, while gray dots are align-
ment loci of other breast cancer related expression sequences (including those were not studied in this paper).
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as shown in Figure 2. Therefore, no aggregation by bins
(as in Morley et al. [4]) was done. eQTL hotspots were
identified as clustered black lines. For association, counts
of identified SNPs were aggregated into bins of ≤5 cM by
chromosomes and bins with more than five top SNPs
were identified as eQTL hotspots (p-value = 4 × 10-3, eval-
uated using the Poisson model outlined in Morley et al.
[4]). In Figure 2, loci of breast cancer susceptibility genes
are marked with red triangles. The identified hotspots
overlap with these genes: linkage at 2q, 11q, and 17q;
overall association at 1q, 2q, and 17q; interaction associ-
ation at 8, 17p, and 20q. Linkage and association have
two identified genetic regulatory loci in common, the
locus of BARD1 (MIM 601593) on 2q34-35 and the locus
of BRCA1 (MIM 113705) on 17q21. Both loci harbor
important breast cancer genes. The overall association
scans incorporate both marginal and interaction signals
and thus correlate better with the marginal linkage scans.
Figure 2 also displays the difference between the interac-
tion association signals and the overall linkage signals,
which demonstrates that different regulatory loci have dif-
ferent extent of interaction activities.

Transcriptional hotspots may be observed even when the
genotypic data are not linked to or associated with the
phenotypes, due to reasons such as highly correlated phe-
notypes [17,18]. We calculated the correlation coefficients
between the 18 transcripts studied and discovered that the

highest value was 0.65. According to simulations, it is less
likely to have false hotspots for traits with correlations at
this level [18]. Therefore, what we have observed in this
paper is more likely due to true regulatory activities.

cis-Acting versus trans-acting
From Figure 1, not much evidence on cis-acting regulators
has been identified except for some association signals
and for the locus of BRCA1, which may require further
investigations. Most interestingly, TP53BP1, a p53 bind-
ing protein, is shown to have a genetic regulator near the
locus of BRCA1, a breast cancer susceptibility gene. It had
been previously discovered by Rauch et al. [16] that
53BP1 binds to a promoter region of BRCA1 (MIM
113705).

Clustering of transcripts
In Figure 3, we clustered transcripts using four sets of
information (the phenotype, the number of shared inter-
acting regulatory pairs, the qGTD return frequencies, and
the overall return frequencies). BRCA1 and RAD51AP1
are found to share much more interacting regulatory loci
than other transcript pairs. Also notably, the grouping
based on interacting regulatory activities is different from
that based on overall regulatory activities. Consistent clus-
tering similarity between phenotype and association
results was observed only on the strongest correlated
pairs: BRCA1 and RAD51AP1, TP53I11 and RPPM. Such

Transcription hotspots identified by linkage and association scansFigure 2
Transcription hotspots identified by linkage and association scans. Linkage, the numbers of times that a SNP has LOD 
> 1.44 (nominal p-value = 0.01) for a transcript were counted and plotted as black vertical lines. Association, the numbers of 
times that a SNP is one of the top 30 association SNPs for a transcript were counted. The SNP-by-SNP transcription hotspots 
pattern is noisy. To have a clear pattern, these counts were aggregated into bins of ≤5 cM by chromosomes as in Morley et al. 
[4]. Bins with ≥5 genetic regulators identified (p = 4 × 10-3) were identified as eQTL hotspots (blue dotted lines are the selec-
tion thresholds).
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similarity is much weaker for the interaction association
signals (shared interacting loci pairs and qGTD return fre-
quencies).

Conclusion
In this paper, we carried out a detailed joint study on 18
breast cancer related transcripts, using both linkage and
association scans. Interesting inter-regulation patterns
and significant overlaps of genetic regulators between
transcripts were observed. Quantitative backward geno-
type-trait association (qBGTA), as a nonparametric multi-
locus association approach, studies eQTL without
assuming a trait model while considering interactions
[10]. Using qBGTA, we evaluated both marginal and inter-
action association signals at each SNPs locus and results
on interaction association returned more significant eQTL
hotspots (Figure 2).
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